Issue |
EPJ Web of Conferences
Volume 94, 2015
DYMAT 2015 - 11th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 02023 | |
Number of page(s) | 6 | |
Section | Microstructural Effects | |
DOI | https://doi.org/10.1051/epjconf/20159402023 | |
Published online | 07 September 2015 |
https://doi.org/10.1051/epjconf/20159402023
Microstructure and local mechanical property evolution during high strain-rate deformation of tantalum
1 Materials Science and Technology, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
2 Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
a Corresponding author: Shraddha@lanl.gov
Published online: 7 September 2015
Shear localization is often a failure mechanism in materials subjected to high strain rate deformation. It is generally accepted that the microstructure evolution during deformation and the resulting heterogeneities strongly influence the development of these shear bands. Information regarding the development of local mechanical heterogeneities during deformation is difficult to characterize and as such, constitute is a critical missing piece in current crystal plasticity models. With the recent advances in spherical nanoindentation data analysis, there is now an unprecedented opportunity to obtain insights into the change in local mechanical properties during deformation in materials at sub-micron length scales. In this work, we quantify the evolution of microstructure and local mechanical properties in tantalum under dynamic loading conditions (split Hopkinson pressure bar), to capture the structure- property correlations at the sub-micron length scale. Relevant information is obtained by combining local mechanical property information captured using spherical nanoindentation with complimentary structure information at the indentation site measured using EBSD. The aim is to gain insight into the role of these microstructural features during macroscopic deformation, particularly their influence on the development of mechanical heterogeneities that lead to failure.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.