Open Access
Issue
EPJ Web of Conferences
Volume 94, 2015
DYMAT 2015 - 11th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 02023
Number of page(s) 6
Section Microstructural Effects
DOI https://doi.org/10.1051/epjconf/20159402023
Published online 07 September 2015
  1. Kalidindi, S.R., A. Bhattacharya, and R. Doherty, Detailed Analysis of Plastic Deformation in Columnar Polycrystalline Aluminum Using Orientation Image Mapping and Crystal Plasticity Models. Proceedings of the Royal Society of London: Mathematical, Physical and Engineering Sciences., 2004. 460(2047): p. 1935–1956 [CrossRef] [Google Scholar]
  2. Asaro, R.J., Crystal Plasticity. Journal of Applied Mechanics, 1983. 50(4b): p. 921–934 [Google Scholar]
  3. Kalidindi, S.R. and L. Anand, An Approximate Procedure for Predicting the Evolution of Crystallographic Texture in Bulk Deformation Processing of Fcc Metals. International Journal of Mechanical Sciences, 1992. 34(3): p. 309–329 [CrossRef] [Google Scholar]
  4. Adams, B.L., Orientation imaging microscopy: Emerging and future applications. Ultramicroscopy Proceedings of the 1996 6th Conference on Frontiers in Electron Microscopy in Materials Science, Jun 4-7 1996, 1997. 67(1-4): p. 11–17 [Google Scholar]
  5. Adams, B.L. Measurement and representation of polycrystalline microstructure. in Winter Annual Meeting of the American Society of Mechanical Engineers, Nov 8–13 1992. 1992. Anaheim, CA, USA: Publ by ASME, New York, NY, USA [Google Scholar]
  6. Kalidindi, S.R. and S. Pathak, Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves. Acta Materialia, 2008. 56: p. 3523–32 [CrossRef] [Google Scholar]
  7. Pathak, S., J. Shaffer, and S.R. Kalidindi, Determination of an effective zero-point and extraction of indentation stress-strain curves without the continuous stiffness measurement signal. Scripta Materialia, 2009. 60: p. 439–42 [CrossRef] [Google Scholar]
  8. Li, X. and B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications. Materials Characterization, 2002. 48(1): p. 11–36 [Google Scholar]
  9. Fischer-Cripps, A.C., Study of analysis methods of depth-sensing indentation test data for spherical indenters Journal of Materials Research, 2001. 16: p. 1579–84 [CrossRef] [Google Scholar]
  10. Pathak, S., D. Stojakovic, and S.R. Kalidindi, Measurement of the local mechanical properties in polycrystalline samples using spherical nanoindentation and orientation imaging microscopy. Acta Materialia, 2009. 57: p. 3020–8 [CrossRef] [Google Scholar]
  11. Pathak, S., et al., Studying grain boundary regions in polycrystalline materials using spherical nano-indentation and orientation imaging microscopy. Journal of Materials Science, 2012. 47(2): p. 815–823 [CrossRef] [Google Scholar]
  12. Pathak, S., et al., Viscoelasticity and high buckling stress of dense carbon nanotube brushes. Carbon, 2009. 47: p. 1969–1976 [CrossRef] [Google Scholar]
  13. Pathak, S., et al., Assessment of lamellar level properties in mouse bone utilizing a novel spherical nanoindentation data analysis method. Journal of the Mechanical Behavior of Biomedical Materials, 2012. 13(0): p. 102–117 [CrossRef] [PubMed] [Google Scholar]
  14. Vachhani, S.J. and S.R. Kalidindi, Grain-Scale Measurement of Slip Resistances in Aluminum Polycrystals using Spherical Nanoindentation Acta Materialia, 2015. accepted [Google Scholar]
  15. Hertz, H., Miscellaneous Papers. New York: MacMillan and Co., Ltd, 1896 [Google Scholar]
  16. Johnson, K.L., Indentation Contact Mechanics. 1985: Cambridge University Press, Cambridge [CrossRef] [Google Scholar]
  17. Pathak, S., et al., Importance of surface preparation on the nano-indentation stress-strain curves measured in metals. Journal of Materials Research, 2009. 24: p. 1142–55 [CrossRef] [Google Scholar]
  18. Vachhani, S.J., R.D. Doherty, and S.R. Kalidindi, Effect of the continuous stiffness measurement on the mechanical properties extracted using spherical nanoindentation Acta Materialia, 2013. 61(10): p. 3744–3751 [CrossRef] [Google Scholar]
  19. T. Bucchiet, E.K. Cerreta, L.D.S.R. Chen, J. Michael, Characterization of Tri-Lab Tantalum. Sand2014-17645 [Google Scholar]
  20. Bunge, H.-J., Texture analysis in materials science. Mathematical Methods. 1993, Göttingen: Cuvillier Verlag [Google Scholar]
  21. Kalidindi, S.R. and S.J. Vachhani, Mechanical characterization of grain boundaries using nanoindentation Current Opinion in Solid State and Materials Science, 2014. 18(3): p. 196–204 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.