Issue |
EPJ Web of Conferences
Volume 94, 2015
DYMAT 2015 - 11th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 6 | |
Section | Biomechanics | |
DOI | https://doi.org/10.1051/epjconf/20159403002 | |
Published online | 07 September 2015 |
https://doi.org/10.1051/epjconf/20159403002
Evaluation of the performance of three elastomers for non-lethal projectile applications
1 CAD-CAE Consultants, 45 Horley Tce, Kilburn, South Australia, 5084, Australia
2 Centre of Excellence in Engineered Fibre Composites, University of Southern Queensland, Toowoomba, 4350, Queensland, Australia
a Corresponding author: tnmurthy@cae-consultants.com.au
Published online: 7 September 2015
Less lethal kinetic ammunitions with soft noses such as eXact iMpact 1006, National Sports Spartan and B&T have been commonly used by military and law enforcement officers in the situations where lethal force is not warranted. In order to explore new materials to be used as nose in such ammunitions, a scholastic study using finite element simulations has been carried out to evaluate the effectiveness of two rubber like elastomers and a polyolefinic foam (low density, highly compressible, stiff and closed cell type of thermos plastic elastomer). State-of-the art thorax surrogate MTHOTA has been employed for the evaluation of blunt thoracic trauma. Force-rigid wall method was employed for the evaluation of head damage curves for each material. XM 1006 has been used as the benchmark projectile for the purpose of comparison. Both blunt thoracic trauma and head damage criterion point of view, both rubbers (R1 and R2) have yielded high values of VCmax and peak impact force. Polyolefinic foam (F1) considered in the study has yielded very promising VCmax values and very less peak impact force when compared with those of bench mark projectile XM 1006.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.