Issue |
EPJ Web Conf.
Volume 133, 2017
International Conference on Semiconductor Nanostructures for Optoelectronics and Biosensors (IC SeNOB 2016)
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 5 | |
Section | Applications for optoelectronics | |
DOI | https://doi.org/10.1051/epjconf/201713303003 | |
Published online | 15 December 2016 |
https://doi.org/10.1051/epjconf/201713303003
Synthesis of dye-sensitized solar cells. Efficiency cells as a thickness of titanium dioxide
Faculty of Mathematics and Natural Sciences, University of Rzeszow, Pigonia 1 35-959 Rzeszow
* Corresponding author: dominika.szura@onet.pl
Published online: 15 December 2016
Defying the influence of the thickness of TiO2 efficiency of dye-sensitized solar cell. It was confirmed that the compatibility of printed layers with the parameters closely related with the DSSC. It was found that the increase in thickness of the titanium dioxide layer, increases the distance between the electrodes, determined by the thickness of the Surlyn foil. With the rise of thickness of dyed layer of TiO2 established decrease in the value of its transmittance. Greatest transparency and aesthetic value obtained for photovoltaic modules with a single layer of titanium dioxide. The improved performance efficiency and preferred yields maximum power were noticed and exhibited by the cells covered with three layers of TiO2. It was established that the behaviour of economic efficiency in the production process, provides a range of cells with two layers of oxide, showing a similar performance and greater transparency.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.