Issue |
EPJ Web Conf.
Volume 140, 2017
Powders and Grains 2017 – 8th International Conference on Micromechanics on Granular Media
|
|
---|---|---|
Article Number | 15029 | |
Number of page(s) | 4 | |
Section | Particle simulations and particle-based methods | |
DOI | https://doi.org/10.1051/epjconf/201714015029 | |
Published online | 30 June 2017 |
https://doi.org/10.1051/epjconf/201714015029
An experimental, theoretical and event-driven computational study of narrow vibrofluidised granular materials
1 Multiscale Mechanics, Department of Fluid and Thermal Engineering, University of Twente, The Netherlands
2 School of physics and astronomy, University of Birmingham, UK.
* e-mail: a.r.thornton@utwente.nl
Published online: 30 June 2017
We review simulations, experiments and a theoretical treatment of vertically vibrated granular media. The systems considered are confined in narrow quasi-two-dimensional and quasi-one-dimensional (column) geometries, where the vertical extension of the container is much larger than one or both horizontal lengths. The additional geometric constraint present in the column setup frustrates the convection state that is normally observed in wider geometries.
We start by showing that the Event Driven (ED) simulation method is able to accurately reproduce the previously experimentally determined phase-diagram for vibrofludised granular materials. We then review two papers that used ED simulations to study narrow quasi-one-dimensional systems revealing a new phenomenon: collective oscillations of the grains with a characteristic frequency that is much lower than the frequency of energy injection. Theoretical work was then undertaken that is able to accurately predict the frequency of such an oscillation and Positron Emission Particle Tracking (PEPT) experiments were undertaken to provide the first experimental evidence of this new phenomenon.
Finally, we briefly discuss ongoing work to create an open-source version of this ED via its integration in the existing open-source package MercuryDPM (http://MercuryDPM.org); which has many advanced features that are not found in other codes.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.