Issue |
EPJ Web Conf.
Volume 145, 2017
ISVHECRI 2016 – XIX International Symposium on Very High Energy Cosmic Ray Interactions
|
|
---|---|---|
Article Number | 19016 | |
Number of page(s) | 3 | |
Section | Poster Presentations | |
DOI | https://doi.org/10.1051/epjconf/201714519016 | |
Published online | 26 June 2017 |
https://doi.org/10.1051/epjconf/201714519016
Liquid scintillator composition optimization for use in ultra-high energy cosmic ray detector systems
Nazarbayev University, Physics Department, Astana, Kazakhstan
a e-mail: dmitriy.beznosko@nu.edu.kz
Published online: 26 June 2017
The Horizon-T (HT) detector system and the currently under R&D HT-KZ detector system are designed for the detection of Extensive Air Showers (EAS) with energies above ∼1016 eV (∼1017 eV for HT-KZ). The main challenges in both detector systems are the fast time resolutions needed for studying the temporary structure of EAS, and the extremely wide dynamic range needed to study the spatial distribution of charged particles in EAS disks. In order to detect the low-density of charged particles far from the EAS axis, a large-area detector is needed. Liquid scintillator with low cost would be a possible solution for such a detector, including the recently developed safe and low-cost water-based liquid scintillators. Liquid organic scintillators give a fast and high light yield (LY) for charged particle detection. It is similar to plastic scintillator in properties but is cost effective for large volumes. With liquid scintillator, one can create detection volumes that are symmetric and yet retain high LY detection. Different wavelength shifters affect the scintillation light by changing the output spectrum into the best detection region. Results of the latest studies of the components optimization in the liquid scintillator formulae are presented.
© The Authors, published by EDP Sciences 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.