Issue |
EPJ Web Conf.
Volume 146, 2017
ND 2016: International Conference on Nuclear Data for Science and Technology
|
|
---|---|---|
Article Number | 04028 | |
Number of page(s) | 4 | |
Section | Fission Physics and Observables | |
DOI | https://doi.org/10.1051/epjconf/201714604028 | |
Published online | 13 September 2017 |
https://doi.org/10.1051/epjconf/201714604028
Impact of material thicknesses on fission observables obtained with the FALSTAFF experimental setup
1 Irfu, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
2 GANIL, 14050 Caen, France
3 LPC, 14076 Caen, France
4 European Commision, DG Joint Research Center, Directorate G – Nuclear Safety and Security, Unit G.2 Standards for Safety, Security and Safeguards, 2440 Geel, Belgium
a e-mail: loic.thulliez@cea.fr
Published online: 13 September 2017
In the past years, the fission studies have been mainly focused on thermal fission because most of the current nuclear reactors work in this energy domain. With the development of GEN-IV reactor concepts, mainly working in the fast energy domain, new nuclear data are needed. The FALSTAFF spectrometer under development at CEA-Saclay, France, is a two-arm spectrometer which will provide mass yields before (2V method) and after (EV method) neutron evaporation and consequently will have access to the neutron multiplicity as a function of mass. The axial ionization chamber, in addition to the kinetic energy value, will measure the energy loss profile of the fragment along its track. This energy loss profile will give information about the fragment nuclear charge. This paper will focus on recent developments on the FALSTAFF design. A special attention will be paid to the impact of the detector material thickness on the uncertainty of different observables.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.