Issue |
EPJ Web Conf.
Volume 148, 2017
5th course of the MRS-EMRS “Materials for Energy and Sustainability” and 3rd course of the “EPS-SIF International School on Energy”
|
|
---|---|---|
Article Number | 00002 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/epjconf/201714800002 | |
Published online | 24 July 2017 |
https://doi.org/10.1051/epjconf/201714800002
The global carbon nation: Status of CO2 capture, storage and utilization
University of Illinois at Chicago - IL, USA and Energy Initiative - Erice ( TP), Italy
Published online: 24 July 2017
As the world transitions toward cleaner and more sustainable energy generation, Carbon Capture and Sequestration/Storage (CCS) plays an essential role in the portfolio of technologies to help reduce global greenhouse gas (GHG) emissions. The projected increase in population size and its resulting increase in global energy consumption, for both transportation and the electricity grid —the largest emitters of greenhouse gases, will continue to add to current CO2 emissions levels during this transition. Since eighty percent of today’s global energy continues to be generated by fossil fuels, a shift to low-carbon energy sources will take many decades. In recent years, shifting to renewables and increasing energy efficiencies have taken more importance than deploying CCS. Together, this triad —renewables, energy efficiency, and CCS— represent a strong paradigm for achieving a carbon-free world. Additionally, the need to accelerate CCS in developing economies like China and India are of increasing concern since migration to renewables is unlikely to occur quickly in those countries. CCS of stationary sources, accounting for only 20% reduction in emissions, as well as increasing efficiency in current systems are needed for major reductions in emissions. A rising urgency for fifty to eighty percent reduction of CO2 emissions by 2050 and one hundred percent reduction by 2100 makes CCS all that more critical in the transition to a cleaner-energy future globally.
© The Authors, published by EDP Sciences - SIF, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.