Issue |
EPJ Web Conf.
Volume 162, 2017
International Conference on Applied Photonics and Electronics 2017 (InCAPE2017)
|
|
---|---|---|
Article Number | 01049 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1051/epjconf/201716201049 | |
Published online | 22 November 2017 |
https://doi.org/10.1051/epjconf/201716201049
Graphene transfer process and optimization of graphene coverage
School of Microelectronic Engineering, Universiti Malaysia Perlis (UniMAP), Kampus UniMAP Pauh Putra, 02600 Arau, Perlis, Malaysia.
* Corresponding author: faiesns@gmail.com
Published online: 22 November 2017
Graphene grown on transition metal is known to be high in quality due to its controlled amount of defects and potentially used for many electronic applications. The transfer process of graphene grown on transition metal to a new substrate requires optimization in order to ensure that high graphene coverage can be obtained. In this work, an improvement in the graphene transfer process is performed from graphene grown on copper foil. It has been observed that the graphene coverage is affected by the pressure given to the top of PDMS to eliminate water and air between graphene and SiO2 (new substrate). This work experimented with different approaches to optimize the graphene coverage, and stamping method has proven to be the best technique in obtaining the largest graphene coverage. This work also highlights the elimination of impurities from graphene after the transfer process, known to be PMMA residues, which involved immersion of graphene in acetone. This method has improved the graphene conductivity.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.