Issue |
EPJ Web Conf.
Volume 162, 2017
International Conference on Applied Photonics and Electronics 2017 (InCAPE2017)
|
|
---|---|---|
Article Number | 01074 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/epjconf/201716201074 | |
Published online | 22 November 2017 |
https://doi.org/10.1051/epjconf/201716201074
Comparison of edge detection techniques for M7 subtype Leukemic cell in terms of noise filters and threshold value
1
School of Microelectronic Engineering, University Malaysia Perlis, Pauh Putra Campus, 02600, Arau, Perlis, Malaysia
2
School of Computer and Communication Engineering, University Malaysia Perlis, Pauh Putra Campus, 02600, Arau, Perlis, Malaysia
* Corresponding author: afifahsalmi.79@gmail.com
Published online: 22 November 2017
This paper will focus on the study and identifying various threshold values for two commonly used edge detection techniques, which are Sobel and Canny Edge detection. The idea is to determine which values are apt in giving accurate results in identifying a particular leukemic cell. In addition, evaluating suitability of edge detectors are also essential as feature extraction of the cell depends greatly on image segmentation (edge detection). Firstly, an image of M7 subtype of Acute Myelocytic Leukemia (AML) is chosen due to its diagnosing which were found lacking. Next, for an enhancement in image quality, noise filters are applied. Hence, by comparing images with no filter, median and average filter, useful information can be acquired. Each threshold value is fixed with value 0, 0.25 and 0.5. From the investigation found, without any filter, Canny with a threshold value of 0.5 yields the best result.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.