Issue |
EPJ Web Conf.
Volume 170, 2018
ANIMMA 2017 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 4 | |
Section | Fundamental physics | |
DOI | https://doi.org/10.1051/epjconf/201817001005 | |
Published online | 10 January 2018 |
https://doi.org/10.1051/epjconf/201817001005
RESPONSE OF CsI:Pb SCINTILLATOR CRYSTAL TO NEUTRON RADIATION
Nuclear and Energy Research Institute, IPEN–CNEN/SP Instituto de Pesquisas Energéticas e Nucleares – IPEN-CNEN/SP Av. Prof. Lineu Prestes 2242 Cidade Universitária CEP: 05508–000 São Paulo-SP Brazil
Published online: 10 January 2018
The helium-3 world crisis requires a development of new methods of neutron detection to replace commonly used 3He proportional counters. In the past decades, great effort was made to developed efficient and fast scintillators to detect radiation. The inorganic scintillator may be an alternative. Inorganic scintillators with much higher density should be selected for optimal neutron detection efficiency taking into consideration the relevant reactions leading to light emission. These detectors should, then, be carefully characterized both experimentally and by means of advanced simulation code. Ideally, the detector should have the capability to separate neutron and gamma induced events either by amplitude or through pulse shape differences. As neutron sources also generate gamma radiation, which can interfere with the measurement, it is necessary that the detector be able to discriminate the presence of such radiation. Considerable progress has been achieved to develop new inorganic scintillators, in particular increasing the light output and decreasing the decay time by optimized doping. Crystals may be found to suit neutron detection. In this report, we will present the results of the study of lead doped cesium iodide crystals (CsI:Pb) grown in our laboratory, using the vertical Bridgman technique. The concentration of the lead doping element (Pb) was studied in the range 5х10-4 M to 10-2 M . The crystals grown were subjected to annealing (heat treatment). In this procedure, vacuum of 10-6 mbar and continuous temperature of 350°C, for 24 hours, were employed. In response to neutron radiation, an AmBe source with energy range of 1 MeV to 12 MeV was used. The activity of the AmBe source was 1Ci Am. The fluency was 2.6 х 106 neutrons/second. The operating voltage of the photomultiplier tube was 1700 V; the accumulation time in the counting process was 600 s and 1800 s. The scintillator crystals used were cut with dimensions of 20 mm diameter and 10 mm height.
Key words: neutron detection / scintillator / crystals
Tufic Madi Filho – tmfilho@ipen.br
José Roberto Berretta – jrretta@ipen.br
José Patrício Náhuel Cárdenas – ahiru@ipen.br
Antonio Carlos Iglesias Rodrigues – acirodri@ipen.br
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.