Issue |
EPJ Web Conf.
Volume 170, 2018
ANIMMA 2017 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
|
|
---|---|---|
Article Number | 01009 | |
Number of page(s) | 5 | |
Section | Fundamental physics | |
DOI | https://doi.org/10.1051/epjconf/201817001009 | |
Published online | 10 January 2018 |
https://doi.org/10.1051/epjconf/201817001009
GEM detector performance with innovative micro-TPC readout in high magnetic field
1
INFN - Sezione di Ferrara - via G. Saragat 1, 44122 Ferrara, Italy
2
Università di Ferrara, Dipartimento di Fisica e Scienze della Terra - via G. Saragat 1, 44122 Ferrara, Italy
3
INFN - Sezione di Torino - via P. Giuria 1, 10125 Torino, Italy
4
)Università di Torino - via P. Giuria 1, 10125 Torino, Italy
5
INFN - Laboratori Nazionale di Frascati - via E. Fermi 40, 00044 Frascati (Roma), Italy
6
Institute of High Energy Physics, Chinese Academy of Sciences, 19B YuquanLu, Beijing, 100049, China
7
INFN - Sezione di Roma, c/o Università la Sapienza, p.le Aldo Moro 2, 00185 Roma, Italy
8
Politecnico di Torino, Dipartimento di Elettronica e Telecomunicazioni, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
9
INFN - Sezione di Perugia, via A. Pascoli 14, 06123 Perugia, Italy
10
Università di Perugia, Dipartimento di Fisica e Geologia, via A. Pascoli 14, 06123 Perugia, Italy
11
Joint Institute for Nuclear Research (JINR), Joliot-Curie 6, Dubna, Moscow region, 141980, Russia
Published online: 10 January 2018
Gas detector development is one of the pillars of the research in fundamental physics. Since several years, a new concept of detectors, called Micro Pattern Gas Detector (MPGD), allowed to overcome several problems related to other types of commonly used detectors, like drift chamber and micro strips detectors, reducing the rate of discharges and providing better radiation tolerance. Among the most used MPGDs are the Gas Electron Multipliers (GEMs). Invented by Sauli in 1997, nowadays GEMs have become an important reality for particle detectors in high energy physics. Commonly deployed as fast timing detectors and triggers, their fast response, high rate capability and high radiation hardness make them also suitable as tracking detectors. The readout scheme is one of the most important features in tracking technology. Analog readout based on the calculation of the center of gravity technique allows to overcome the limit imposed by digital pads, whose spatial resolution is limited by the pitch dimensions. However, the presence of high external magnetic fields can distort the electronic cloud and affect the performance. The development of the micro-TPC reconstruction method brings GEM detectors into a new prospective, improving significantly the spatial resolutionin presence of high magnetic fields. This innovative technique allows to reconstruct the 3-dimensional particle position, as Time Projection Chamber, but within a drift gap of a few millimeters. In these report, the charge centroid and micro-TPC methods are described in details. We discuss the results of several test beams performed with planar chambers in magnetic field. These results are one of the first developments of micro-TPC technique for GEM detectors, which allows to reach unprecedented performance in a high magnetic field of 1 T.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.