Issue |
EPJ Web Conf.
Volume 173, 2018
Mathematical Modeling and Computational Physics 2017 (MMCP 2017)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 8 | |
Section | Plenary and Invited Lectures | |
DOI | https://doi.org/10.1051/epjconf/201817301006 | |
Published online | 14 February 2018 |
https://doi.org/10.1051/epjconf/201817301006
Generation of Quantum Correlations in Bipartite Gaussian Open Quantum Systems
National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, P.O. Box MG-6, Romania
* e-mail: isar@theory.nipne.ro
Published online: 14 February 2018
We describe the generation of quantum correlations (entanglement, discord and steering) in a system composed of two coupled non-resonant bosonic modes immersed in a common thermal reservoir, in the framework of the theory of open systems. We show that for separable initial squeezed thermal states entanglement generation may take place, for definite values of squeezing parameter, average photon numbers, temperature of the thermal bath, dissipation constant and strength of interaction between the two bosonic modes. We also show that for initial uni-modal squeezed states Gaussian discord can be generated for all non-zero values of the strength of interaction between the modes. Likewise, for an initial separable state, a generation of Gaussian steering may take place temporarily, for definite values of the parameters characterizing the initial state and the thermal environment, and the strength of coupling between the two modes.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.