Issue |
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 01063 | |
Number of page(s) | 4 | |
Section | Modelling and Numerical Simulation | |
DOI | https://doi.org/10.1051/epjconf/201818301063 | |
Published online | 07 September 2018 |
https://doi.org/10.1051/epjconf/201818301063
Evolution of penetration mechanism induced by strain rate effect
1
Nanjing University of Science and Technology, School of Mechanical Engineering,
Nanjing,
China ;
2
Army Engineering University of PLA, State Key Lab. of Disaster Prevention & Mitigation of Explosion & Impact,
Nanjing,
China
* Corresponding author: ligan1205@163.com
Published online: 7 September 2018
According to the dynamic mechanical properties, in the striking velocity range, the strain rate of the projectile and target caused by penetration can reach 104~106 /s. The strain rate effect increases sharply and then tends to saturation. During the penetration process, the mechanical properties of the target and the projectile change violently and present serious spatial inhomogeneity, which has a great influence on the penetration effect. In this paper, penetration experiments of granite targets by steel projectiles are carried out in the range of 1200m/s~2400m/s, the crater parameters are measured and the projectiles are recovered to obtain the macroscopic failure pattern of the projectiles and the targets. Based on the dynamic mechanical properties, an interaction model of the projectiles and the target is established, which considers the spatial and temporal distributions of the strain rates during penetration. With this model, the influences of material mechanical behaviour on penetration effect at different velocities are analysed, the formation cause and internal mechanism of penetration effect are discussed, and the influence mechanism of the strain rate effect on the penetration mechanism evolution is also revealed.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.