Issue |
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 02063 | |
Number of page(s) | 6 | |
Section | Experimental Techniques | |
DOI | https://doi.org/10.1051/epjconf/201818302063 | |
Published online | 07 September 2018 |
https://doi.org/10.1051/epjconf/201818302063
Experimental methodology for the measurement of plasticity on metals at high strain-rates
1
Imperial College London, Department of Mechanical Engineering,
SW7 2AZ,
London,
United Kingdom
2
AWE Plc, Materials Science,
RG7 4PR, Aldermaston,
Reading,
United Kingdom
* Corresponding author: a.sancho15@imperial.ac.uk
Published online: 7 September 2018
An experimental methodology has been developed for the tensile characterisation of ductile isotropic metals at high strain-rate. This study includes the region beyond plastic instability or necking, which is rarely analysed for conventional applications. The research explores an imaging technique used to track the geometry of the specimen during tensile tests and calculate true local values of stress and strain by applying Bridgman theory [1]. To improve the quality of the images taken at high strain-rate an in-situ high speed shadowgraph technique has been developed, and to obtain better results from the images a sub-pixel accuracy edge detection algorithm has been implemented. The technique has been applied to an austenitic stainless steel. Its tensile behaviour has been assessed by testing round samples at strain-rates ranging from quasi-static to ~103 s-1. The results obtained with the proposed methodology have been validated by comparison with more conventional techniques such as video-extensometer and digital image correlation in the pre-necking region and good performance even at the highest strain-rate tested has been proved.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.