Issue |
EPJ Web Conf.
Volume 191, 2018
XXth International Seminar on High Energy Physics (QUARKS-2018)
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 11 | |
Section | Neutrino Physics | |
DOI | https://doi.org/10.1051/epjconf/201819103002 | |
Published online | 31 October 2018 |
https://doi.org/10.1051/epjconf/201819103002
Stationary and non-stationary solutions of the evolution equation for neutrino in matter
Department of Theoretical Physics, Faculty of Physics, Moscow State University, 119991 Moscow, Russia
* e-mail: av.chukhnova@physics.msu.ru
** e-mail: lobanov@phys.msu.ru
Published online: 31 October 2018
We study solutions of the equation which describes the evolution of a neutrino propagating in dense homogeneous medium in the framework of the quantum field theory. In the two-flavor model the explicit form of Green function is obtained, and as a consequence the dispersion law for a neutrino in matter is derived. Both the solutions describing the stationary states and the spin-flavor coherent states of the neutrino are found. It is shown that the stationary states of the neutrino are different from the mass states, and the wave function of a state with a definite flavor should be constructed as a linear combination of the wave functions of the stationary states with coefficients, which depend on the mixing angle in matter. In the ultra-relativistic limit the wave functions of the spin-flavor coherent states coincide with the solutions of the quasi-classical evolution equation. Quasi-classical approximation of the wave functions of spin-flavor coherent states is used to calculate the probabilities of transitions between neutrino states with definite flavor and helicity.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.