Issue |
EPJ Web Conf.
Volume 191, 2018
XXth International Seminar on High Energy Physics (QUARKS-2018)
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 9 | |
Section | Neutrino Physics | |
DOI | https://doi.org/10.1051/epjconf/201819103003 | |
Published online | 31 October 2018 |
https://doi.org/10.1051/epjconf/201819103003
Numerical estimate of minimal active-sterile neutrino mixing
1
Department of Particle Physics and Cosmology, Physics Faculty, Moscow State University, Vorobjevy Gory 1-2, 119991, Moscow, Russia
2
Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect 7a, 117312, Moscow, Russia
* e-mail: iv.krasnov@physics.msu.ru
Published online: 31 October 2018
Seesaw mechanism constrains from below mixing between active and sterile neutrinos for fixed sterile neutrino masses. Signal events associated with sterile neutrino decays inside a detector at fixed target experiment are suppressed by the mixing angle to the power of four. Therefore sensitivity of experiments such as SHiP and DUNE should take into account minimal possible values of the mixing angles. We extend the previous study of this subject [1] to a more general case of non-zero CP-violating phases in the neutrino sector. Namely, we provide numerical estimate of minimal value of mixing angles between active neutrinos and two sterile neutrinos with the third sterile neutrino playing no noticeable role in the mixing. Thus we obtain a sensitivity needed to fully explore the seesaw type I mechanism for sterile neutrinos with masses below 2 GeV, and one undetectable sterile neutrino that is relevant for the fixedtarget experiments. Remarkably, we observe a strong dependence of this result on the lightest active neutrino mass and the neutrino mass hierarchy, not only on the values of CP-violating phases themselves. All these effects sum up to push the limit of experimental confirmation of sterile-active neutrino mixing by several orders of magnitude below the results of [1] from 10-10 - 10-11 down to 10-12 and even to 10-20 in parts of parameter space; non-zero CP-violating phases are responsible for that.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.