Issue |
EPJ Web Conf.
Volume 197, 2019
Atmospheric Monitoring for High Energy Astroparticle Detectors (AtmoHEAD) 2018
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 4 | |
Section | The Influence of the Atmosphere on the Measurements of Present and Future UHECR and Gamma-Ray Experiments | |
DOI | https://doi.org/10.1051/epjconf/201919701003 | |
Published online | 15 January 2019 |
https://doi.org/10.1051/epjconf/201919701003
Analysis of atmospheric attenuation using the Telescope Array central laser data
Department of Physics and Astronomy, University of Utah
* e-mail: tareq@cosmic.utah.edu
Published online: 15 January 2019
Located in the western desert of the state of Utah, the Telescope Array (TA) experiment measures the properties of ultra high energy cosmic ray (UHECR) induced extensive air showers. TA employs a hybrid detector comprised of a large surface array of scintillator detectors overlooked by three fluorescence telescopes stations. The TA Low Energy extension (TALE) detector has operated as a monocular Cherenkov/fluorescence detector for nearly five years, and has recently been complemented by a closely spaced surface array to operate in hybrid mode. The TAx4 upgrade is underway and aims to, as the name suggests, quadruple the size of the surface array to improve statistics at the highest energies (post-GZK events).
The analysis of the TA fluorescence detectors (FD) data requires knowledge of the degree of the atmospheric attenuation of UV light produced by shower particles. This attenuation depends partially on the amount of aerosols present in the atmosphere at the time of shower observation. Being highly variable, real time measurement of the aerosols light attenuation is accomplished through the use of a central laser facility (CLF) located at the center of the surface array, and in the field of view of the three FDs, as well as, the TALE FD. In this proceeding we will describe the experiment, and the CLF data and analysis, and give results on measured aerosols attenuation, yearly averaged. FD measurements of shower energy and Xmax, involve corrections for atmospheric attenuation due to the presence of aerosols. We discuss the errors introduced into the shower parameters reconstruction due to uncertainty about aerosols attenuation.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.