Issue |
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
|
|
---|---|---|
Article Number | 05026 | |
Number of page(s) | 4 | |
Section | T5 - Software development | |
DOI | https://doi.org/10.1051/epjconf/201921405026 | |
Published online | 17 September 2019 |
https://doi.org/10.1051/epjconf/201921405026
The Event Buffer Management for MT-SNiPER
1
Institute of High Energy Physics, Chinese Academy of Science,
Beijing,
China
2
Shandong University,
Jinan
China
3
Sun Yat-sen University,
Guangzhou
China
* e-mail: zoujh@ihep.ac.cn
Published online: 17 September 2019
SNiPER is a general purpose offline software framework for high energy physics experiment. It provides some features that are attractive to neutrino experiments, such as the event buffer. More than one events are available in the buffer according to a customizable time window, so that it is easy for users to apply events correlation analysis. We also implemented the MT-SNiPER to support multithreading computing based on Intel TBB. In MT-SNiPER, the event loop is split into pieces, and each piece is dispatched to a task. The global buffer, an extension and enhancement to the event buffer, is implemented for MT-SNiPER. The global buffer is available by all threads. It keeps all the events being processed in memory. When there is an available task, a subset of its events is dispatched to that task. There can be overlaps between the subsets in different tasks due to the time window. However, it is ensured that each event is processed only once. In the task side, the subsets of events are locally managed by a normal event buffer. So the global buffer can be transparent to most user algorithms. Within the global buffer, the multithreading computing of MT-SNiPER becomes more practicable.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.