Issue |
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
|
|
---|---|---|
Article Number | 06025 | |
Number of page(s) | 8 | |
Section | T6 - Machine learning & analysis | |
DOI | https://doi.org/10.1051/epjconf/201921406025 | |
Published online | 17 September 2019 |
https://doi.org/10.1051/epjconf/201921406025
Large-Scale Distributed Training Applied to Generative Adversarial Networks for Calorimeter Simulation
1
California Institute of Technology,
Pasadena, California,
U.S.
2
CERN,
Meyrin,
Switzerland
3
Gangneung-Wonju National University,
Korea
Published online: 17 September 2019
In recent years, several studies have demonstrated the benefit of using deep learning to solve typical tasks related to high energy physics data taking and analysis. In particular, generative adversarial networks are a good candidate to supplement the simulation of the detector response in a collider environment. Training of neural network models has been made tractable with the improvement of optimization methods and the advent of GP-GPU well adapted to tackle the highly-parallelizable task of training neural nets. Despite these advancements, training of large models over large data sets can take days to weeks. Even more so, finding the best model architecture and settings can take many expensive trials. To get the best out of this new technology, it is important to scale up the available network-training resources and, consequently, to provide tools for optimal large-scale distributed training. In this context, our development of a new training workflow, which scales on multi-node/multi-GPU architectures with an eye to deployment on high performance computing machines is described. We describe the integration of hyper parameter optimization with a distributed training framework using Message Passing Interface, for models defined in keras [12] or pytorch [13]. We present results on the speedup of training generative adversarial networks trained on a data set composed of the energy deposition from electron, photons, charged and neutral hadrons in a fine grained digital calorimeter.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.