Open Access
Issue |
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
|
|
---|---|---|
Article Number | 06025 | |
Number of page(s) | 8 | |
Section | T6 - Machine learning & analysis | |
DOI | https://doi.org/10.1051/epjconf/201921406025 | |
Published online | 17 September 2019 |
- Generative Adversarial Networks, Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, https://arxiv.org/abs/1406.2661 [Google Scholar]
- The Neural Network Zoo, Fjodor van Veen, http://www.asimovinstitute.org/neural-network-zoo/ [Google Scholar]
- Machine learning at the energy and intensity frontiers of particle physics, Alexander Radovic, Mike Williams, David Rousseau, Michael Kagan, Daniele Bonacorsi, Alexander Himmel, Adam Aurisano, Kazuhiro Terao, Taritree Wongjirad, https://www.nature.com/articles/s41586-018-0361-2 [Google Scholar]
- A stochastic approximation method, Robbins, H. and S. Monro (1951), The annals of mathematical statistics, 400–;407. [Google Scholar]
- An overview of gradient descent optimization algorithms, Sebastian Ruder, https://arxiv.org/abs/1609.04747 [Google Scholar]
- MPI Forum. MPI: a message passing interface standard. (1994). Technical Report (1994). [Google Scholar]
- Horovod: fast and easy distributed deep learning in TensorFlow, Alexander Sergeev and Mike Del Balso, https://arxiv.org/abs/1802.05799 [Google Scholar]
- https://www.nvidia.com/en-us/data-center/nvlink/ [Google Scholar]
- NVIDIA Collective Communications Library (NCCL), https://developer.nvidia.com/nccl [Google Scholar]
- Gradient Energy Matching for Distributed Asynchronous Gradient Descent, Joeri Hermans, Gilles Louppe, https://arxiv.org/abs/1805.08469 [Google Scholar]
- Martín Abadiet al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org. [Google Scholar]
- Keras, François Chollet and others, https://keras.io [Google Scholar]
- Automatic differentiation in PyTorch, Adam Paszkeet al., https://pytorch.org [Google Scholar]
- Practical Bayesian Optimization of Machine Learning Algorithms Jasper Snoek, Hugo Larochelle and Ryan P. Adams Advances in Neural Information Processing Systems, 2012 [Google Scholar]
- scikit-optimize python library, https://scikit-optimize.github.io/ [Google Scholar]
- Genetic Algorithms, Numerical Optimization, and Constraints, Zbigniew Michalewicz, In: Morgan Kaufmann, 1995, pp. 151–158. [Google Scholar]
- Calorimetry with Deep Learning: Particle Classification, Energy Regression, and Simulation for High-Energy Physics, Benjamin Hoobermanet al., https://dl4physicalsciences. github.io/files/nips_dlps_2017_15.pdf [Google Scholar]
- Intel®Math Kernel Library for Deep Neural Networks, https://github.com/intel/mkl-dnn [Google Scholar]
- An MPI-Based Python Framework for Distributed Training with Keras, Dustin Anderson, Jean-Roch Vlimant, Maria Spiropulu, https://arxiv.org/abs/1712.05878https://github.com/vlimant/mpi_learn [Google Scholar]
- https://www.cscs.ch/computers/piz-daint/ [Google Scholar]
- https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/ [Google Scholar]
- https://github.com/vlimant/mpi_opt [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.