Open Access
Issue |
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
|
|
---|---|---|
Article Number | 06024 | |
Number of page(s) | 8 | |
Section | T6 - Machine learning & analysis | |
DOI | https://doi.org/10.1051/epjconf/201921406024 | |
Published online | 17 September 2019 |
- V. Estrade, C. Germain, I. Guyon, D. Rousseau, Systematics aware learning: a case study in High Energy Physics, in ESANN 2018 – 26th European Symposium on Artificial Neural Networks (Bruges, Belgium, 2018), https://hal.inria.fr/hal-01715155 [Google Scholar]
- C. Adam-Bourdarios, G. Cowan, C. Germain, I. Guyon, B. Kégl, D. Rousseau, The Higgs boson machine learning challenge, in NIPS 2014 Workshop on High-energy Physics and Machine Learning (Montreal, Canada, 2014), Vol. 42 of JMLR: Workshop and Conference Proceedings, pp. 19–55 [Google Scholar]
- S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, J.W. Vaughan, Machine Learning 79, 151 (2010) [Google Scholar]
- H. Shimodaira, Journal of Statistical Planning and Inference 90, 227 (2000) [Google Scholar]
- G. Cowan, K. Cranmer, E. Gross, O. Vitells, The European Physical Journal C 71, 1554 (2011) [Google Scholar]
- A. collaboration, Dataset from the atlas higgs boson machine learning challenge 2014, http://opendata.cern.ch/record/328 (2014) [Google Scholar]
- P. Baldi, P. Sadowski, D. Whiteson (2014), 1410.3469 [Google Scholar]
- P. Baldi, P. Sadowski, D. Whiteson, Dataset from the enhanced higgs boson to τ+τ- search with deep learning, http://mlphysics.ics.uci.edu/data/htautau/ (2015) [Google Scholar]
- V. Estrade, D. Rousseau, Datawarehouse for systematic effect on toys and open access datasets, https://doi.org/10.5281/zenodo.1887847 [Google Scholar]
- V. Estrade, C. Germain, I. Guyon, D. Rousseau, Adversarial learning to eliminate systematic errors: a case study in High Energy Physics, in NIPS 2017 - workshop Deep Learning for Physical Sciences (Long Beach, United States, 2017), pp. 1–5, https://hal.inria.fr/hal-01665925 [Google Scholar]
- Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, V. Lempitsky, arXiv:1505.07818 [cs, stat] (2015), arXiv: 1505.07818 [Google Scholar]
- N. Courty, R. Flamary, D. Tuia, Domain adaptation with regularized optimal transport, in ECML/PKDD 2014 (2014), LNCS, pp. 1–16 [Google Scholar]
- G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046 [physics, stat] (2016), arXiv: 1611.01046 [Google Scholar]
- I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, arXiv:1406.2661 [cs, stat] (2014), arXiv: 1406.2661 [Google Scholar]
- [The Atlas Collaboration], Performance of mass-decorrelated jet substructure observ-ables for hadronic two-body decay tagging in atlas, ATL-PHYS-PUB-2018-014 (2018) [Google Scholar]
- M. Hardt, E. Price, N. Srebro, Equality of Opportunity in Supervised Learning, in NIPS (2016) [Google Scholar]
- P.Y. Simard, B. Victorri, Y. LeCun, J.S. Denker, Tangent Prop - A Formalism for Specifying Selected Invariances in an Adaptive Network., in NIPS, edited by J.E. Moody, S.J. Hanson, R. Lippmann (Morgan Kaufmann, 1991), pp. 895–903, ISBN 1-55860-222-4, http://dblp.uni-trier.de/db/conf/nips/nips1991.html#SimardVLD91 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.