Issue |
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
|
|
---|---|---|
Article Number | 03049 | |
Number of page(s) | 13 | |
Section | Offline Computing | |
DOI | https://doi.org/10.1051/epjconf/202125103049 | |
Published online | 23 August 2021 |
https://doi.org/10.1051/epjconf/202125103049
Fast and Accurate Electromagnetic and Hadronic Showers from Generative Models
1 Institut für Experimentalphysik, Universität Hamburg, Germany
2 Deutsches Elektronen-Synchrotron, Germany
3 Center for Data and Computing in Natural Sciences, Germany
4 Taras Shevchenko National University of Kyiv, Ukraine
* e-mail: sascha.daniel.diefenbacher@uni-hamburg.de
Published online: 23 August 2021
Generative machine learning models offer a promising way to efficiently amplify classical Monte Carlo generators’ statistics for event simulation and generation in particle physics. Given the already high computational cost of simulation and the expected increase in data in the high-precision era of the LHC and at future colliders, such fast surrogate simulators are urgently needed. This contribution presents a status update on simulating particle showers in high granularity calorimeters for future colliders. Building on prior work using Generative Adversarial Networks (GANs), Wasserstein-GANs, and the information-theoretically motivated Bounded Information Bottleneck Autoencoder (BIB-AE), we further improve the fidelity of generated photon showers. The key to this improvement is a detailed understanding and optimisation of the latent space. The richer structure of hadronic showers compared to electromagnetic ones makes their precise modeling an important yet challenging problem. We present initial progress towards accurately simulating the core of hadronic showers in a highly granular scintillator calorimeter.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.