Issue |
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 13 | |
Section | Offline Computing | |
DOI | https://doi.org/10.1051/epjconf/202125103003 | |
Published online | 23 August 2021 |
https://doi.org/10.1051/epjconf/202125103003
Decoding Photons: Physics in the Latent Space of a BIB-AE Generative Network
1 Institut für Experimentalphysik, Universität Hamburg, Germany
2 Deutsches Elektronen-Synchrotron, Germany
3 Taras Shevchenko National University of Kyiv, Ukraine
* e-mail: erik.buhmann@uni-hamburg.de
Published online: 23 August 2021
Given the increasing data collection capabilities and limited computing resources of future collider experiments, interest in using generative neural networks for the fast simulation of collider events is growing. In our previous study, the Bounded Information Bottleneck Autoencoder (BIB-AE) architecture for generating photon showers in a high-granularity calorimeter showed a high accuracy modeling of various global differential shower distributions. In this work, we investigate how the BIB-AE encodes this physics information in its latent space. Our understanding of this encoding allows us to propose methods to optimize the generation performance further, for example, by altering latent space sampling or by suggesting specific changes to hyperparameters. In particular, we improve the modeling of the shower shape along the particle incident axis.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.