Issue |
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
|
|
---|---|---|
Article Number | 03042 | |
Number of page(s) | 10 | |
Section | Offline Computing | |
DOI | https://doi.org/10.1051/epjconf/202125103042 | |
Published online | 23 August 2021 |
https://doi.org/10.1051/epjconf/202125103042
Physics Validation of Novel Convolutional 2D Architectures for Speeding Up High Energy Physics Simulations
1 CERN, Esplanade des Particules 1, Geneva, Switzerland
2 RWTH Aachen University, Templergraben 55, Aachen, Germany
3 DESY, Notkestraße 85, Hamburg, Germany
* e-mail: florian.matthias.rehm@cern.ch
Published online: 23 August 2021
The precise simulation of particle transport through detectors remains a key element for the successful interpretation of high energy physics results. However, Monte Carlo based simulation is extremely demanding in terms of computing resources. This challenge motivates investigations of faster, alternative approaches for replacing the standard Monte Carlo technique.
We apply Generative Adversarial Networks (GANs), a deep learning technique, to replace the calorimeter detector simulations and speeding up the simulation time by orders of magnitude. We follow a previous approach which used three-dimensional convolutional neural networks and develop new two-dimensional convolutional networks to solve the same 3D image generation problem faster. Additionally, we increased the number of parameters and the neural networks representational power, obtaining a higher accuracy. We compare our best convolutional 2D neural network architecture and evaluate it versus the previous 3D architecture and Geant4 data. Our results demonstrate a high physics accuracy and further consolidate the use of GANs for fast detector simulations.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.