Open Access
Issue |
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
|
|
---|---|---|
Article Number | 03042 | |
Number of page(s) | 10 | |
Section | Offline Computing | |
DOI | https://doi.org/10.1051/epjconf/202125103042 | |
Published online | 23 August 2021 |
- S. Agostinelli et al., GEANT4-a simulation toolkit (2003), Vol. 506, pp. 250–303 [Google Scholar]
- A. Albrecht et al., A Roadmap for HEP Software and Computing R&D for the 2020s (2019), Vol. 3, https://doi.org/10.1007/s41781-018-0018-8 [Google Scholar]
- G. Apollinari, B. Alonso et al., High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report V 0.1 (2017), Vol. 4/2017 [Google Scholar]
- de Oliveira et al., Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis (Springer Science and Business Media LLC, 2017), Vol. 1 [Google Scholar]
- M. Paganini et al., CaloGAN: Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks (American Physical Society (APS), 2018), Vol. 97 [Google Scholar]
- A. Ghosh (ATLAS Collaboration), Tech. Rep. ATL-SOFT-PROC-2019-007, CERN, Geneva (2019), http://cds.cern.ch/record/2680531 [Google Scholar]
- D. Sipio et al., DijetGAN: a Generative-Adversarial Network approach for the simulation ofQCD dijet events at the LHC (Springer Science and Business Media, 2019) [Google Scholar]
- C. et al., Generative Models for Fast Calorimeter Simulation: the LHCb case (EDP Sciences, 2019), p. 02034, http://dx.doi.org/10.1051/epjconf/201921402034 [Google Scholar]
- G. Khattak et al., Three Dimensional Energy Parametrized Generative Adversarial Networks for Electromagnetic Shower Simulation (2018) [Google Scholar]
- Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, in Proceedings of the IEEE (1998), pp. 2278–2324 [Google Scholar]
- S. Liu, W. Deng, Very deep convolutional neural network based image classification using small training sample size, in 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR) (2015), pp. 730–734 [Google Scholar]
- A. Bochkovskiy, C.Y. Wang, H.Y. Liao, Yolov4: Optimal speed and accuracy of object detection (2020) [Google Scholar]
- K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition (2015) [Google Scholar]
- C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi, Inception-v4, inception-resnet and the impact of residual connections on learning (2016), 1602.07261 [Google Scholar]
- Alqahtani et al., Applications of Generative Adversarial Networks (GANs): An Updated Review (2019) [Google Scholar]
- F. Gomez-Donoso, A. Garcia-Garcia, J. Rodriguez, S. Orts, M. Cazorla, LonchaNet: A sliced-based CNN architecture for real-time 3D object recognition (2017), pp. 412–418 [Google Scholar]
- K. Sarkar, B. Hampiholi, K. Varanasi, D. Stricker, Learning 3d shapes as multi-layered height-maps using 2d convolutional networks (2018), 1807.08485 [Google Scholar]
- T. Quast, Qualification, performance validation and fast generative modelling of beam test calorimeter prototypes for the cms calorimeter endcap upgrade (2020) [Google Scholar]
- I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial networks (2014), 1406.2661 [Google Scholar]
- G.E. Nasr, E. Badr, C. Joun, Cross Entropy Error Function in Neural Networks: Forecasting Gasoline Demand, in FLAIRS Conference (2002) [Google Scholar]
- P.M. Swamidass, ed., MAPE (mean absolute percentage error) (Springer US, Boston, MA, 2000), pp. 462–462, https://doi.org/10.1007/1-4020-0612-8_580 [Google Scholar]
- J. Nilsson, T. Akenine-Möller, Understanding ssim (2020) [Google Scholar]
- E. Buhmann, Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed (2020) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.