Open Access
Issue
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
Article Number 03043
Number of page(s) 8
Section Offline Computing
DOI https://doi.org/10.1051/epjconf/202125103043
Published online 23 August 2021
  1. Sergeev F., Jain N., Kostenkov G., Trofimova E. Fast simulation of the LHCb electromagnetic calorimeter response using VAEs and GANs // Journal of Physics: Conference Series. No. 1740, 2021 [Google Scholar]
  2. Chekalina V., Orlova E., Ratnikov F., Ulyanov D., Ustyuzhanin A. and Zakharov E. Generative models for fast calorimeter simulation: the LHCb case EPJ Web Conf., 2019 [Google Scholar]
  3. Zhang, H., Goodfellow, I., Metaxas, D., and Odena, A. Self-attention generative adversarial networks. In International conference on machine learning (pp. 7354–7363). PMLR., 2019 [Google Scholar]
  4. Paganini M., Oliveira L., and Nachman B., CaloGAN: simulating 3D high energy particle showers in multi-layer electromagnetic calorimeters with generative adversarial networks Phys. Rev. D 97, 2018 [Google Scholar]
  5. Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spectral normalization for generative adversarial networks. ICLR, 2018 [Google Scholar]
  6. Gulrajani I., Ahmed F., Arjovsky M., Dumoulin V. and Courville A. Improved training of Wasserstein GANs Advances in Neural Information Processing Systems vol 30, pp 5769–5779, 2017 [Google Scholar]
  7. Sajjadi M., Bachem O., Lucic M., Bousquet O. and Gelly S. Assessing generative models via precision and recall Conf. on Neural Information Processing Systems, 2018 [Google Scholar]
  8. Alves A.A., Jr. et al. LHCb collaboration, JINST 3, 2008 [Google Scholar]
  9. Agostinelli, S. et al. 2003 GEANT4 — a simulation toolkit Nucl. Instr. Meth. A vol 506 no 3 pp 250–303 [Google Scholar]
  10. Jiang Y., Chang S., Wang Z. Transgan: Two transformers can make one strong gan //arXiv preprint arXiv:2102.07074. - 2021. [Google Scholar]
  11. Naeem M. F. et al. Reliable fidelity and diversity metrics for generative models. //International Conference on Machine Learning.- PMLR, 2020, pp 7176–7185 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.