Issue |
EPJ Web Conf.
Volume 214, 2019
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP 2018)
|
|
---|---|---|
Article Number | 06034 | |
Number of page(s) | 8 | |
Section | T6 - Machine learning & analysis | |
DOI | https://doi.org/10.1051/epjconf/201921406034 | |
Published online | 17 September 2019 |
https://doi.org/10.1051/epjconf/201921406034
REANA: A System for Reusable Research Data Analyses
1
CERN,
Geneva,
Switzerland
2
New York University,
New York, NY,
USA
3
CSC
Espoo,
Finland
* e-mail: tibor.simko@cern.ch
Published online: 17 September 2019
The revalidation, reinterpretation and reuse of research data analyses requires having access to the original computing environment, the experimental datasets, the analysis software, and the computational workflow steps which were used by researchers to produce the original scientific results in the first place.
REANA (Reusable Analyses) is a nascent platform enabling researchers to structure their research data analyses in view of enabling future reuse. The analysis is described by means of a YAML file that captures sufficient information about the analysis assets, parameters and processes. The REANA platform consists of a set of micro-services allowing to launch and monitor container-based computational workflow jobs on the cloud. The REANA user interface and the command-line client enables researchers to easily rerun analysis workflows with new input parameters. The REANA platform aims at supporting several container technologies (Docker), workflow engines (CWL, Yadage), shared storage systems (Ceph, EOS) and compute cloud infrastructures (Ku-bernetes/OpenStack, HTCondor) used by the community.
REANA was developed with the particle physics use case in mind and profits from synergies with general reusable research data analysis patterns in other scientific disciplines, such as bioinformatics and life sciences.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.