Issue |
EPJ Web Conf.
Volume 219, 2019
International Workshop on Particle Physics at Neutron Sources (PPNS 2018)
|
|
---|---|---|
Article Number | 10002 | |
Number of page(s) | 6 | |
Section | Instrumentation and Techniques | |
DOI | https://doi.org/10.1051/epjconf/201921910002 | |
Published online | 12 December 2019 |
https://doi.org/10.1051/epjconf/201921910002
Development of a powerful UCN source at PNPI's WWR-M reactor
1 NRC “Kurchatov Institute” – Petersburg Nuclear Physics Institute, Gatchina, Russia
2 P.L. Kapitza Institute for Physical Problems of the Russian Academy of Science, Production Department, Moscow, Russia
a e-mail: serebrov_ap@pnpi.nrcki.ru
Published online: 12 December 2019
The WWR-M reactor at PNPI is planned to be equipped with a high-flux source for ultracold neutrons (UCNs). The method of UCN production is based on neutron conversion in superfluid helium, exploiting the particular qualities of that quantum liquid. As a result of optimizing the source parameters, we expect a temperature of superfluid helium of 1.2 K and a UCN density of 1.3 × 104 cm−3 in a neutron electric dipole moment (EDM) spectrometer. The expected flux densities of cold neutrons (with wavelengths in the range 2–20 Å) and very cold neutrons (50–100 Å) at the output of a neutron guide with a cross section of 30 × 200 mm2 are 9.7 × 107 cm−2s−1 and 8.3 × 105 cm−2s−1, respectively. The capability of maintaining a temperature of 1.37 K at a thermal load of 60 W was shown experimentally, while the theoretical load is expected to be 37 W. Calculations show that it is possible to decrease the helium temperature down to 1.2 K at similar heat load. The project includes the development of experimental stations at UCN beams, such as for a neutron EDM search, measurements of the neutron lifetime, and for a search for neutron-to-mirror-neutron transitions. In addition, three beams of cold and very cold neutrons are foreseen. At present, the vacuum container of the UCN source has been manufactured and the production of the low-temperature deuterium and helium parts of the source has been started.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.