Issue |
EPJ Web Conf.
Volume 225, 2020
ANIMMA 2019 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
|
|
---|---|---|
Article Number | 04022 | |
Number of page(s) | 5 | |
Section | Research Reactors | |
DOI | https://doi.org/10.1051/epjconf/202022504022 | |
Published online | 20 January 2020 |
https://doi.org/10.1051/epjconf/202022504022
Power calibration methodology at the CROCUS reactor
1
Ecole Polytechnique Fédérale de Lausanne (EPFL),
2
Nuclear Energy and Safety Research Division (NES), Paul Scherrer Institut (PSI)
Published online: 20 January 2020
In the present article, we detail the method used to experimentally determine the power of the CROCUS zero-power reactor, and to subsequently calibrate its ex-core monitor fission chambers. Knowledge of the reactor power is a mandatory quantity for a safe operation. Furthermore, most experimental research programs rely on absolute fission rates in design and interpretation – for instance, tally normalization of reaction rate studies in dosimetry, or normalization of power spectral density in neutron noise measurements. The minimization of associated uncertainties is only achieved by an accurate power determination method. The main experiment consists in the irradiation, and therefore, the activation of several axially distributed Au-197 foils in the central axis of the core, which activities are measured with a High-Purity Germanium (HPGe) gamma spectrometer. The effective cross sections are determined by MCNP and Serpent Monte Carlo simulations. We quantify the reaction rate of each gold foil, and derive the corresponding fission rate in the reactor. The variance weighted average over the distributed foils then provides a calibration factor for the count rates measured in the fission chambers during the irradiation. We detail the calibration process with minimization of respective uncertainties arising from each sub-step, from power control after reactivity insertion, to the calibration of the HPGe gamma spectrometer. Biases arising from different nuclear data choices are also discussed.
Key words: Neutron dosimetry / neutron activation analysis / in-core dosimetry / integral experiment / zero-power reactor
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.