Issue |
EPJ Web Conf.
Volume 226, 2020
Mathematical Modeling and Computational Physics 2019 (MMCP 2019)
|
|
---|---|---|
Article Number | 02016 | |
Number of page(s) | 4 | |
Section | Mathematical Modeling, Numerical Methods, and Simulation | |
DOI | https://doi.org/10.1051/epjconf/202022602016 | |
Published online | 20 January 2020 |
https://doi.org/10.1051/epjconf/202022602016
Finite Time Correlations and Compressibility Effects in the Three-Dimensional Kraichnan Model
1
Institute of Experimental Physics, Slovak Academy of Sciences,
Watsonova 47,
040 01
Košice,
Slovak Republic
2
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,
Joliot-Curie 6,
141 980
Dubna, Moscow Region,
Russian Federation
★ e-mail: menkyna@saske.sk
Published online: 20 January 2020
Using the field theoretic renormalization group technique the simultaneous influence of the compressibility and finite time correlations of the non-solenoidal Gaussian velocity field on the advection of a passive scalar field is studied within the generalized Kraichnan model in three spatial dimensions up to the second-order approximation in the corresponding perturbative expansion. All possible infrared stable fixed points of the model, which drive the corresponding scaling regimes of the model, are identified and their regions of the infrared stability in the model parametric space are discussed. It is shown that, depending on the value of the parameter that drives the compressibility of the system, there exists a gap in the parametric space between the regions where the model with the frozen velocity field and the model with finite-time correlations of the velocity field are stable or there exists an overlap between them.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.