Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 04018 | |
Number of page(s) | 8 | |
Section | Monte Carlo Transport | |
DOI | https://doi.org/10.1051/epjconf/202124704018 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124704018
A SEMI-ANALYTIC EIGENVALUE EXTENSION TO THE DOPPLER SLAB ANALYTIC BENCHMARK1
Naval Nuclear Laboratory PO Box 1072 Schenectady, NY 12031
kyle.remley@unnpp.gov
david.griesheimer@unnpp.gov
1 This manuscript has been authored by Fluor Marine Propulsion under contract No. DOE-89233018CNR000004 with the U.S. Department of Energy. The United States government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, and world-wide license to publish, distribute, translate, duplicate, exhibit, and perform the published form of this manuscript, or allow others to do so, for United States Government purposes.
Published online: 22 February 2021
Advancement in multiphysics simulation has motivated interest in availability of analytic and semi-analytic benchmark solutions. These solutions are sought because they can be used to assess the accuracy of complicated numerical schemes necessary to simulate coupled physics systems. While there exist analytic solutions for fixed-source problems, benchmark-quality eigenvalue solutions are of interest because eigenvalue problems more closely align with analyses undertaken with coupled solvers. This paper extends a fixed-source benchmark, the Doppler Slab benchmark, to the eigenvalue case. A novel solution for this benchmark is derived. Numerical implementation of the benchmark is demonstrated through verification of numerical computation of the power reactivity coefficient.
Key words: Benchmark / Analytic / Monte Carlo / Multiphysics / Doppler Broadening
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.