Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 06009 | |
Number of page(s) | 8 | |
Section | Advanced Modelling and Simulation | |
DOI | https://doi.org/10.1051/epjconf/202124706009 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124706009
NEUTRONIC MODELING OF A FAST CORE WITH MODERATING MATERIALS USING APOLLO3R CODE
1 CEA/Cadarache DEN/DER, 13108 Saint-Paul-lez-Durance, France
2 CEA/DAM DIF/DPTA/SPN, Bruyeres-le-Chatel 91297 Arpajon, France
Published online: 22 February 2021
In order to improve passive safety of Sodium-cooled Fast Reactors The French Alternative Energies and Atomic Energy Commission (CEA) has proposed a new core design called CADOR - an SFR core with enhanced Doppler reactivity feedback. One of its most important design features is the introduction of solid moderating materials inside each fuel assemblies to slightly decrease the average neutron energy. The article focuses on development and validation of a neutronics calculation scheme able to produce accurate results in case of CADOR and other fast cores with moderating materials. The study uses two different fuel assembly models moderated by metallic beryllium and zirconium hydride (ZrH2) respectively The study includes discussion of neutron scattering treatment and different ways of spatial homogenization and energy condensations. The results indicate that the accurate scattering treatment leads to much better estimation of Doppler constant, especially in case of ZrH2 moderated core. By using combined deterministic-Monte Carlo calculation scheme we are able to quantify the biases on global reactivity, reactivity feedbacks and control rod worth. We demonstrate that spatial homogenization plays a more important role in case of moderated CADOR assemblies and thus preserving certain level of heterogeneity within fuel assemblies can lower the calculation bias significantly.
Key words: SFR / CADOR / APOLLO3® / moderation / resonance upscattering
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.