Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 07001 | |
Number of page(s) | 8 | |
Section | Transient Systems and Analysis | |
DOI | https://doi.org/10.1051/epjconf/202124707001 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124707001
MULTIPHYSICS MODELISATION OF AN UNPROTECTED LOSS OF FLOW TRANSIENT IN A SODIUM COOLED FAST REACTORS USING A NEUTRONIC-THERMAL-HYDRAULIC COUPLING SCHEME
# CEA, DEN, DM2S, Saclay, F-91191 Gif-sur-Yvette, France
* CEA, DEN, DER, Cadarache, F-13108 Saint-Paul-lez-Durance, France
Corresponding author: vincent.pascal@cea.fr
Published online: 22 February 2021
Sodium cooled fast neutron reactors (SFR) are one of the selected reactor concepts in the framework of the Generation IV International Forum. In this concept, unprotected loss of cooling flow transients (ULOF), for which the non-triggering of backup systems is postulated, are regarded as potential initiators of core melting accidents. During an ULOF transient, spatial distributions of fuel, structure and sodium temperatures are affected by the core cooling flow decrease, which will modify the spatial and energy distribution of neutron in the core due to the spatial competition of neutron feedback effects. As no backup systems are triggered, sodium may reach its boiling temperature at some point, leading to local sodium density variations and making the transient fluctuate in a two-phase flow physics where thermal-hydraulics and neutronics may interact with each other. The transient phenomenology involves several physic disciplines at different time and spatial scales, such as core neutronics, coolant thermal-hydraulics and fuel thermo-mechanics. This paper presents the results of thermal-hydraulic/neutronic coupled simulations of an ULOF transient on the SFR project ASTRID. These coupled calculations are based on the supervisor platform SALOME to link the neutron code APOLLO3® to the system thermal-hydraulic code CATHARE3. The physical approach used by the coupling to describe the neutron kinetic is a quasi-static adiabatic one, updating the normalized spatial power distribution periodically by performing static neutron calculations, while a point kinetic model associated to a neutron feedback model calculates the power amplitude variations.
Key words: MULTIPHYSICS / ASTRID / ULOF / APOLLO3® / CATHARE3
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.