Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 07018 | |
Number of page(s) | 10 | |
Section | Transient Systems and Analysis | |
DOI | https://doi.org/10.1051/epjconf/202124707018 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124707018
VALIDATION OF COOLANT THERMAL RESPONSE IN A TRANSIENT FINITE DIFFERENCE THERMAL TRANSPORT MODEL WITH APPLICATIONS TO FAST SPECTRUM REACTORS
The Colorado School of Mines Department of Mechanical Engineering, 1610 Illinois St., Golden, CO, 80401, USA
osbornea@mines.edu
mdeinert@mines.edu
Published online: 22 February 2021
Transient behavior in nuclear reactors is important in accidents and with reactivity control systems that are driven by thermal feedback. Here, we describe a transient finite difference model for a pin cell system. The fidelity of the model is shown by validation against the thermocouple measurements of the CABRI BI1 experiment and the Safety Analysis System-Sodium Fast Reactor model of the experiment. In the BI1 experiment, a sodium-cooled mixed oxide fuel pin was subject to a loss of flow transient to coolant boiling within a sodium test loop positioned in the center of the CABRI research reactor. Comparisons to the initial steady-state coolant temperature profile, coolant temperature profile at twenty seconds into the transient, and at four axial locations within the coolant show agreement of the simple model with the experimental results better than or similar to those of the Safety Analysis System-Sodium Fast Reactor model. The model can be used to determine the thermal response times of coolant in fast reactors currently operating or in the design phase when subject to loss of flow accidents or other transients. Here, we investigate the difference in coolant thermal response for metal fueled and mixed oxide fueled sodium fast reactors when subject to transient overpower and loss of flow events. Additionally, we determine the effect of pin pitch on outlet coolant temperatures during the overpower event. Finally, we return to the CABRI experiment and show the importance of porosity in fuel temperature calculations.
Key words: thermal response / fast spectrum reactors / transient
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.