Open Access
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 07018
Number of page(s) 10
Section Transient Systems and Analysis
Published online 22 February 2021
  1. C. Pope. Experimental Breeder Reactor II Benchmark Evaluation, Idaho State University (2017). [Google Scholar]
  2. S. Qvist and E. Suvdantsetseg, “Preliminary transient analysis of the Autonomous Reactivity Control system for fast reactors,” Prog. Nucl. Energy, 77, pp. 32–47 (2014). [Google Scholar]
  3. E. Suvdantsetseg, S. Qvist, and E. Greenspan, “Preliminary transient analysis of the Autonomous Reactivity Control system for fast reactors,” Ann. Nucl. Energy, 77, pp. 47–64 (2015). [Google Scholar]
  4. D.W. Wootan, R.P. Omberg, T. Sofu, and C. Grandy, “Passive Safety Testing at the Fast Flux Test Facility Relevant to New LMR Designs,” Proceedings of the IAEA Proceedings of the International Conference on Fast Reactor and Related Fuel Cycles, Yekaterinburg, Russia, June 26–29, 2017 (2017). [Google Scholar]
  5. S.A. Qvist, C. Hellesen, M. Gradecka, A.E. Dubberley, T. Fanning, and E. Greenspan, “Tailoring the response of Autonomous Reactivity Control (ARC) systems,” Ann. Nucl. Energy 99, pp. 383–398 (2017). [Google Scholar]
  6. S.A. Qvist, C. Hellesen, R. Thiele, A.E. Dubberley, M. Gradecka, and E. Greenspan, “Autonomous Reactivity Control (ARC) — Principles, geometry and design process,” Nucl. Eng. Des. 307, pp. 249–274 (2016). [Google Scholar]
  7. Y. Fukano, “SAS4A analysis on hypothetical total instantaneous flow blockage in SFRs based on inpile experiments,” Ann. Nucl. Energy 77, pp. 376–392 (2015). [Google Scholar]
  8. A. Lazaro, M. Schikorr, K. Mikityuk, L. Ammirabile, G. Bandini, G. Darmet, D. Schmitt, P. Dufour, A. Tosello, and E. Gallego, “Code assessment and modelling for Design Basis Accident analysis of the European Sodium Fast Reactor design. Part II: Optimised core and representative transients analysis,” Nucl. Eng. Des. 277, pp. 265–276 (2014). [Google Scholar]
  9. H. Ninokata and T. Okano, “Sabena: Subassembly boiling evolution numerical analysis,” Nucl. Eng. Des. 120, pp. 349–367 (1990). [Google Scholar]
  10. A.C. Pontedeiro, R.M. Cotta, and J. Su, “Improved lumped model for thermal analysis of high burnup nuclear fuel rods,” Prog. Nucl. Energy 50, pp. 767–773 (2008). [Google Scholar]
  11. C. An, F.C. Moreira, and J. Su, “Thermal analysis of the melting process in a nuclear fuel rod,” Appl. Therm. Eng. 68, pp. 133–143 (2014). [Google Scholar]
  12. J. Tang, M. Huang, Y. Zhao, S. Maqsood, and X. Ouyang, “Numerical investigations on the melting process of the nuclear fuel rod in RIAs and LOCAs,” Int. J. Heat Mass Transf. 124, pp. 990–1002 (2018). [Google Scholar]
  13. S.M. Ghiaasiaan, A.T. Wassel, J.L. Farr, and S.M. Divakaruni. “Heat conduction in nuclear fuel rods,” Nucl. Eng. Des. 85, pp. 89–96 (1985). [Google Scholar]
  14. V. Matuzas, L. Ammirabile, L. Cloarec, D. Lemasson, S. Perez-Martin, and A. Ponomarev, “Extension of ASTEC-Na capabilities for simulating reactivity effects in Sodium Cooled Fast Reactor.” Ann. Nucl. Energy 119, pp. 440–453 (2018). [Google Scholar]
  15. K. Tuček, J. Carlsson, and H. Wider, “Comparison of sodium and lead-cooled fast reactors regarding reactor physics aspects, severe safety and economical issues,” Nucl. Eng. Des. 236, pp. 1589–1598 (2006). [Google Scholar]
  16. C.B. Davis, Evaluation of the Use of Existing RELAP5–3D Models to Represent the Actinide Burner Test Reactor, Idaho National Laboratory, Idaho Falls, Idaho (2007). [Google Scholar]
  17. S. Bortot, E. Suvdantsetseg, and J. Wallenius, “BELLA: a multi-point dynamics code for safety-informed design of fast reactors,” Ann. Nucl. Energy 85, pp. 228–235 (2015). [Google Scholar]
  18. G. Espinosa-Paredes, Espinosa-Martínez, E.-G. Fuel rod model based on Non-Fourier heat conduction equation. Ann. Nucl. Energy 36, pp. 680–693 (2009). [Google Scholar]
  19. A. Flores y Flores, V. Matuzas, S. Perez-Martin, G. Bandini, S. Ederli, L. Ammirabile, and W. Pfrang, “Analysis of ASTEC-Na capabilities for simulating a loss of flow CABRI experiment,” Ann. Nucl. Energy 94, pp. 175–188 (2016). [Google Scholar]
  20. M. Bottoni, B. Dorr, C. Homann, and D. Struwe, “State of development of the computer programme BACCHUS-3D/TP for the description of transient two-phase flow conditions in LMFBR fuel pin bundles,” Nucl. Eng. Des. 100, pp. 321–349 (1987). [Google Scholar]
  21. J.D. Macdougall, “Lillington, J.N. The SABRE code for fuel rod cluster thermohydraulics,” Nucl. Eng. Des. 82, pp. 171–190 (1984). [Google Scholar]
  22. F.A. Soares, R.O. de Castro Guedes, and F. Scofano Neto, “Analysis of the influence of pellet-tocladding gap on the transient heat transfer in nuclear fuel rods via the integral transform technique,” J. Braz. Soc. Mech. Sci. Eng. 40 (2018). [Google Scholar]
  23. A.E. Waltar, Todd, D.R.; Tsvetkov, P.V. Fast Spectrum Reactors, 3rd ed., Springer, New York, USA (2012). [Google Scholar]
  24. Nellis and Klein, Heat Transfer; Cambridge University Press, Cambridge, England (2012). [Google Scholar]
  25. Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data, International Atomic Energy Agency, Vienna, Austria (2008). [Google Scholar]
  26. J. Lamarsh and A. Baratta, Introduction to Nuclear Engineering, 3rd ed., Prentice Hall, New Jersey, USA (2001). [Google Scholar]
  27. W.G. Luscher and K.J. Geelhood, Material Property Correlations: Comparisons between FRAPCON-3.4, FRAPTRAN 1.4, and MATPRO, United States Nuclear Regulatory Commission (2011). [Google Scholar]
  28. Matlab R2018a, The MathWorks, Natick, Massachusetts, USA. [Google Scholar]
  29. S. Perez-Martin, W. Pfrang, and M. Haselbauer, “Analysis of the CABRI-1 Single Fuel Pin LOF Experiment BI1 with SAS-SFR Code including Two-phase Sodium Behaviour,” Proceedings of ICAPP 2014, Charlotte, North Carolina, USA, April 6–9, 2014, pp. 506–514 (2014). [Google Scholar]
  30. G. Bandini, S. Ederli, S. Perez-Martin, M. Haselbauer, W. Pfrang, L.E. Herranz, C. Berna, V. Matuzas, A. Flores y Flores, and N. Girault, “ASTEC-Na code: Thermal-hydraulic model validation and benchmarking with other codes,” Ann. Nucl. Energy 119, pp. 427–439 (2018). [Google Scholar]
  31. Argonne National Laboratories Software: SAS4a/SASSYS-1 (Reactor Dynamics and Safety Analysis Code, Argonne National Laboratories Nuclear Engineering Division, Lemont, Illinois, USA. [Google Scholar]
  32. K. Lassmann and F. Hohlefeld. “The revised URGAP model to describe the gap conductance between fuel and cladding,” Nucl. Eng. Des. 103, pp. 215–221 (1987). [Google Scholar]
  33. Y. Philipponneau, “Thermal conductivity of (U, Pu)O2−x mixed oxide fuel,” J. Nucl. Mater, 188, pp. 194–197 (1992). [Google Scholar]
  34. W.S. Rasband, ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, (1997). [Google Scholar]
  35. F.V. Hessman, Figure Calibration ImageJ Plugin, Institut fur Astrophysik, University of Gottingen, Göttingen, Germany (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.