Open Access
Issue
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 07017
Number of page(s) 8
Section Transient Systems and Analysis
DOI https://doi.org/10.1051/epjconf/202124707017
Published online 22 February 2021
  1. R. K. McCardell et al., “Reactivity accident test results and analyses for the SPERT III Ecore - A small oxide-fueled, pressurized-water reactor,” IDO–17281, U.S. Atomic Energy Commission, USA (1969). [Google Scholar]
  2. R. E. Heffner et al., “SPERT III Reactor Facility,” IDO–16721, U.S. Atomic Energy Commission, USA (1961). [Google Scholar]
  3. A. Dokhane et al., “Validation of PSI best estimate plus uncertainty methodology against SPERT-III reactivity initiated accident experiments,” Annals of Nuclear Energy, 118, pp. 178–84 (2018). [Google Scholar]
  4. M. Knebel et al., “Validation of the Serpent 2-DYNSUB code sequence using the Special Power Excursion Reactor Test III (SPERT III),” Annals of Nuclear Energy, 91, pp. 79–91 (2016). [Google Scholar]
  5. A. Zoia et al., “Reactor physics analysis of the SPERT III E-core with Tripoli-4®,” Annals of Nuclear Energy, 90, pp. 71–82 (2016). [Google Scholar]
  6. S. AOKI et al., “Analysis of the SPERT-III E-Core using ANCK Code with the Chord Weighting Method,” Journal of Nuclear Science and Technology, 46, pp. 239–251 (2009). [Google Scholar]
  7. G. Grandi et al., “Qualification of CASMO5 / SIMULATE-3K against the SPERT-III E-core Cold Start-up Experiments,” Proceedings of PHYSOR 2012 - Advances in Reactor Physics, Knoxville, USA, April 15–20, (2012). [Google Scholar]
  8. A. P. Olson, “Neutronics Calculations for SPERT-III, E-Core,” ANL/GTRI/TM-13/10, Argonne National Laboratory, USA, May, (2012). [Google Scholar]
  9. J. Dugone, “SPERT III Reactor Facility: E-core Revision,” IDO–17036, U.S. Atomic Energy Commission, USA (1965). [Google Scholar]
  10. INTERNATIONAL ATOMIC ENERGY AGENCY, “Research Reactor Benchmarking Database: Facility Specification and Experimental Data,” Technical Reports Series No. 480, IAEA, Vienna, (2015). [Google Scholar]
  11. J. Leppaenen et al., “The Serpent Monte Carlo code: Status, development and applications in 2013,” Annals of Nuclear Energy, 82, pp. 142–150 (2015). [Google Scholar]
  12. M.B. Chadwick, M. Herman, P. Obložinský, et al., ”ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data”, Nuclear Data Sheets, 112, pp. 2887 – 2996, 2011. [Google Scholar]
  13. U. Rohde et al., “The reactor dynamics code DYN3D – models, validation and applications,” Annals of Nuclear Energy, 89, pp. 170–190 (2016). [Google Scholar]
  14. G. Lerchl et al., “ATHLET 3.1A User’s Manual,” GRS-P-1 / Vol. 1, Rev. 7, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Germany, (2016). [Google Scholar]
  15. M. Zilly et al., “KMACS Validation Report,” GRS-P-8 / Vol. 2, Rev. 0, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Germany, (2018). [Google Scholar]
  16. J. Leppaenen et al., “Calculation of effective point kinetics parameters in the Serpent 2 Monte Carlo code,” Annals of Nuclear Energy, 65, pp. 272–279 (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.