Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 09015 | |
Number of page(s) | 8 | |
Section | Nuclear Data | |
DOI | https://doi.org/10.1051/epjconf/202124709015 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124709015
RE-EVALUATION OF THE TSL FOR YTTRIUM HYDRIDE
1 Naval Nuclear Laboratory PO Box 79, West Mifflin, PA 15122-0079, USA
2 Naval Nuclear Laboratory PO Box 1072, Schenectady, NY 12301-1072, USA
Michael.Zerkle@unnpp.gov
Jesse.Holmes@unnpp.gov
Jonathan.Wormald@unnpp.gov
Published online: 22 February 2021
Yttrium hydride (YHx) is of interest as a high-temperature moderator material in advanced nuclear reactor systems because of its superior ability to retain hydrogen at elevated temperatures. Thermal neutron scattering laws (TSL) for hydrogen bound in yttrium hydride (H-YH2) and yttrium bound in yttrium hydride (Y-YH2) were previously evaluated by Naval Nuclear Laboratory using the ab initio approach and released in ENDF/B-VIII.0. In that work, density functional theory, incorporating the generalized gradient approximation (GGA) for the exchange-correlation energy, was used to simulate the face-centered cubic structure of YH2 and calculate the interatomic Hellmann-Feynman forces for a 2×2×2 supercell containing 96 atoms. Lattice dynamics calculations using PHONON were used to determine the phonon density of states. The calculated phonon density of states for H and Y in YH2 were then used to prepare H-YH2 and Y-YH2 TSL evaluations, in the incoherent approximation, using the LEAPR module of NJOY. In addition elastic scattering was assumed to be incoherent for both H and Y. While the incoherent elastic scattering approximation is appropriate for H-YH2, it introduces an undesirable approximation for Y-YH2. In this work, we re-evaluate the TSL for Y-YH2 using FLASSH (Full Law Analysis Scattering System Hub). Y-YH2 is evaluated using the FLASSH generalized coherent elastic scattering capability in order to capture the Bragg peaks associated with the YH2 crystal structure which were neglected in the prior NJOY-based evaluation due to limitations in LEAPR. An experimental approach to validate the Y-YH2 TSL using neutron transmission measurements is discussed.
Key words: TSL / thermal neutron scattering / yttrium hydride
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.