Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 09023 | |
Number of page(s) | 7 | |
Section | Nuclear Data | |
DOI | https://doi.org/10.1051/epjconf/202124709023 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124709023
THERMAL SCATTERING LAW ENDF LIBRARIES FOR LIQUID FLIBE
Nuclear Reactor Program, Department of Nuclear Engineering North Carolina State University, Raleigh, NC 27695, USA
Published online: 22 February 2021
Several advanced nuclear reactor concepts have been proposed in the past few years where FLiBe molten salt represents a major constituent of the core. In this case, neutrons produced in fission slow down and moderate in FLiBe (a eutectic with a mixture of 2:1 ratio of LiF and BeF2) until they reach low energies (i.e, below 1 eV). At that stage, the thermalization process becomes dominant and the neutrons achieve a quasi-equilibrium energy state that is dependent on the temperature of the moderator. In neutronic simulations, the description of neutron thermalization is captured using the thermal scattering law (TSL), i.e., S(α,β), of the material in which low energy neutrons are interacting. S(α,β) defines the energy-momentum phase space that is available for an incoming low energy neutron. In addition, it is directly proportional to the double differential thermal neutron scattering cross section. In this work, the TSL of molten salt FLiBe is developed based on a generalized density of excitation states (GDOS) derived from atomic trajectories generated using classical molecular dynamics (MD) simulations that were performed with the LAMMPS code. The MD simulations utilized a Born-Mayer type atomic potential function that was verified to reproduce the properties of FLiBe including density and viscosity. The FLASSH code was used to evaluate the TSL’s ENDF File 7 in a temperature range extending from 773 K to 1673 K. In addition, ACE type cross section libraries are produced and tested with the objective of contributing the data to the National Nuclear Data Center for inclusion in the ENDF/B-VIII database.
Key words: Molten salt / FLiBe / Neutron / scattering law / nuclear reactor
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.