Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 10004 | |
Number of page(s) | 10 | |
Section | Verification & Validation | |
DOI | https://doi.org/10.1051/epjconf/202124710004 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124710004
NEUTRON EMISSION MEASUREMENTS OF PWR SPENT FUEL SEGMENTS AND PRELIMINARY VALIDATION OF DEPLETION CALCULATIONS
Paul Scherrer Institut (PSI), Laboratory for Reactor Physics and Thermal-hydraulics (LRT) Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
gregory.perret@psi.ch
dimitri.rochman@psi.ch
alexander.vasiliev@psi.ch
hakim.ferroukhi@psi.ch
Published online: 22 February 2021
Assessing neutron emission of LWR spent fuel is necessary for the back-end of the fuel cycle, such as the dimensioning of transport and storage casks of spent fuel. Although core and depletion codes can calculate the isotopic composition of the discharged fuel and therefore infer its neutron source, accurate measured neutron emission values remain rare mainly because of the difficulty to prepare, handle and characterize spent fuel. Measured neutron emission values are, however, extremely relevant to code validation, as neutrons emitted by LWR spent fuel mainly originates from spontaneous fissions of minor actinides (e.g., 242Cm, 244Cm and 252Cf) that are produced only after a large number of neutron captures in the reactor core. This paper reports on neutron emission measurements of selected LWR-PROTEUS spent fuel samples and their comparisons with a core and depletion calculation chains based on CASMO-5, SIMULATE-3 and the SNF codes. The measured LWR-PROTEUS samples are comprised of 11 samples irradiated in a Swiss PWR. The samples are UO2 or MOX and have discharge burn-ups ranging from 20 to 120 GWd/t. We measured the 40-cm long samples in a hot-cell of the Paul Scherrer Institut using a measurement station made of polyethylene and a BF3 detector. We repeated the measurements several times and in different conditions to ensure the accuracy and reproducibility of the results. We derived ratios of neutron rates emitted by the different samples and absolute neutron emission rates by comparison with a reference 252Cf source, which we re-calibrated for this exercise. The experimental uncertainty (1σ) on the absolute neutron emission varies from 3% to 4%. We compared a subset of the measured values to the calculation predictions and showed an agreement within less than 7% for all but one sample.
Key words: spent fuel / measurement / neutron emission / validation / LWR-PROTEUS
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.