Open Access
Issue
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 10004
Number of page(s) 10
Section Verification & Validation
DOI https://doi.org/10.1051/epjconf/202124710004
Published online 22 February 2021
  1. I. C. Gauld and J. C. Ryman, “Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel - NUREG/CR-6700,” Oak Ridge, TN 37831-6370, 2000. [Google Scholar]
  2. I. C. Gauld and C. V. Parks, “Review of Technical Issues Related to Predicting Isotopic Compositions and Source Terms for High-Burnup LWR Fuel - NUREG/CR-6701,” Oak Ridge, TN 37831-6370, 2000. [Google Scholar]
  3. B. B. Bevard, J. C. Wagner, C. V. Parks, and M. Aissa, “Review of Information for Spent Nuclear Fuel Burnup Confirmation - NUREG/CR-6998,” 2009. [Google Scholar]
  4. J. C. Wagner, M. D. DeHart, and C. V. Parks, “Recommendations for Addressing Axial Burnup in PWR Burnup Credit Analyses - NUREG/CR-6801,” 2003. [Google Scholar]
  5. K. Abbas, G. Nicolaou, and L. Koch, “In situ gamma spectroscopy of spent nuclear fuel using a CdTe detector,” Nucl. Instruments Methods Phys. Res. A, 383(2–3), pp. 601–604 (1996). [Google Scholar]
  6. J. Vogt et al., “Measurements of decay heat and gamma-ray intensity of spent LWR fuel assemblies,” IAEA-SM-352/40. [Google Scholar]
  7. M. V. Mora, “Nondestructive burnup measurements by gamma-ray spectroscopy on spent fuel elements of the RP-10 research reactor,” Progress in Nuclear Energy, 53, pp. 344-353 (2011). [Google Scholar]
  8. A. Sasahara et al., “Neutron and Gamma Ray Source Evaluation of LWR High Burn-up UO2 and MOX Spent Fuels,” J. Nucl. Sci. Technol., 41 (4), pp. 448–456 (2004). [Google Scholar]
  9. A. Sasahara et al., “Isotopic Analysis of Actinides and Fission Products in LWR High-Brunup UO2 Spent Fuels and its Comparison with Nuclide Composition Calculated Using JENDL, ENDF/B, JEF, and JEFF,” J. Nucl. Sci. Technol., 45 (4), pp. 313–327, (2008). [Google Scholar]
  10. A. Sasahara et al., “Chemical Isotopic Analysis of Fission Products in PWR-MOX Spent Fuels and Computational Evaluation Using JENDL, ENDF/B, JEF, and JEFF,” J. Nucl. Sci. Technol., 45 (5), pp. 390–401, (2008). [Google Scholar]
  11. H. U. Zwicky et al., “Nuclide analysis in high burnup fuel samples irradiated in Vandellós 2,” J. Nucl. Mater., vol. 402, no. 1, pp. 60–73, Jul. 2010. [Google Scholar]
  12. P. Grimm, I. Günther-Leopold and H.D. Berger, “Burnup calculations and chemical analysis of irradiated fuel samples studied in LWR-PROTEUS Phase II,” Proceedings of Physics of reactors 2016: (PHYSOR 2006), Vancouver, Canada, Sept. 10-14 (2006). [Google Scholar]
  13. P. Grimm, G. Perret and H. Ferroukhi, “CASMO-4E AND CASMO-5 analysis of the isotopic compositions of the LWR-PROTEUS phase II burnt PWR UO2 fuel samples”, Proceedings of Physics of reactors 2014: the role of reactor physics toward a sustainable future (PHYSOR 2014), Kyoto, Japan, Oct. 3, A (2014). [Google Scholar]
  14. M. Pecchia et al., “Validation of Monte Carlo based burnup codes against LWR-PROTEUS Phase-II experimental data,” Ann. Nucl. Energy, 97, pp. 153–164 (2016). [Google Scholar]
  15. O. Leray et al., “Nuclear data uncertainty propagation on spent fuel nuclide compositions,” Ann. Nucl. Energy, 94, pp. 603-611 (2016). [Google Scholar]
  16. P. Grimm et al., “Analysis of ReactivityWorths of Highly-Burnt PWR Fuel Samples Measured in LWR-PROTEUS Phase II,” Proceedings of Physics of reactors 2008: (PHYSOR 2008), Interlaken, Switzerland, Sept. 14-19 (2008). [Google Scholar]
  17. M. Hursin et al., “Verification of the new implementations in SHARK-X for reactivity coefficients and relative reactivity worth UQ”, Proceedings of Physics of reactors 2016: Unifying Theory and Experiments in the 21st century (PHYSOR 2016), May 1-5, 1 (2016). [Google Scholar]
  18. P. Grimm et al., “Analysis of reactivity worths of burnt PWR fuel samples measured in LWR-PROTEUS Phase II using a CASMO-5 reflected-assembly model,” Prog. Nucl. Energy, 101 (2017). [Google Scholar]
  19. J. Park et al., “Uncertainty quantification of LWR-PROTEUS Phase II experiments using CASMO-5,” Ann. Nucl. Energy, 131(9), pp. 9-22 (2019). [Google Scholar]
  20. M.F. Murphy et al., “Reactivity and neutron emission measurements of highly burnt PWR fuel rod samples,” Ann. Nucl. Energy, 33(9), pp. 760-765 (2006). [Google Scholar]
  21. G. Perret and U. Strauch, “Measurement of Cf-252 Source # 1154 Intensity,” Paul Scherrer Institute, AN-41-18-09-V.0 (2018). [Google Scholar]
  22. G. Perret and D. Rochman, “Neutron emission measurement of the PWR LWR-PROTEUS Phase II spent fuel samples at AHL,” Paul Scherrer Institute, TM-41-18-17 V.0 (2018). [Google Scholar]
  23. J.T. Goorley, “MCNP6.1.1-Beta Release Notes,” Los Alamos National Laboratory, LA-UR-14-24680 (2014). [Google Scholar]
  24. A. Santamarina et al., “The JEFF-3.1.1 Nuclear Data Library,” Data Bank, JEFF Report 22, NEA No. 6807, OECD-NEA (2009). [Google Scholar]
  25. J. Rhodes et al., “CASMO-5 User’s Manual Rev. 5,” Studsvik, SSP—07/431 Rev. 5, 2012. [Google Scholar]
  26. A.S. DiGiovine et al., “SIMULATE-3 User’s Manual,” Studsvik, Studsvik/SOA-95/15 (1995). [Google Scholar]
  27. T. Simeonov et al., “SNF User’s Manual,” Stusvik, SSP-11/328 Rev.3 (2011). [Google Scholar]
  28. H. Ferroukhi, “ENSI On-Call 2018 – Core Licensing Analyses for KKG Cycle 40,” Paul Scherrer Institute, TM-41-18-14-V.0. (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.