Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 10025 | |
Number of page(s) | 8 | |
Section | Verification & Validation | |
DOI | https://doi.org/10.1051/epjconf/202124710025 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124710025
VERIFICATION AND VALIDATION OF BACK-END CYCLE SOURCE TERM CALCULATION OF THE NODAL CODE RAST-K
Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
* Corresponding author. Email: deokjung@unist.ac.kr
skansms0@unist.ac.kr
ebiwonjumi@unist.ac.kr
poryor@unist.ac.kr
jinsu@unist.ac.kr
Published online: 22 February 2021
Verification and validation (V&V) results of source term calculation capability implemented in the nodal diffusion code RAST-K are presented in this paper. An isotope inventory prediction method is presented in this work which is implemented with RAST-K and the lattice code STREAM. STREAM generates cross-section and provides number density information by history branch calculations. RAST-K supplies the power history and three history indexes (boron concentration, moderator temperature and fuel temperature). The main feature of the newly implemented spent nuclear fuel (SNF) characterization is the direct consideration of three-dimensional (3D) core simulation conditions by using operation history information. As a result of this, it could reduce the computation time. The implemented SNF analysis capability have two main functions. The first is to predict isotope inventory by Lagrange non-linear interpolation method, using power history correction factors. The second is to calculate the radiological response activity, decay heat, and neutron/gamma source strengths. The V&V of these two functions are thus presented herein. The isotope inventory prediction is validated with measured data from ten SNF samples of Takahama-3 and six samples of Calvert Cliffs-1 pressurized water reactors (PWR). Eighteen decay heat measurements of Ringhals Unit 3 PWR fuel assemblies are then employed to validate the decay heat calculation results. In addition, STREAM is employed in a code-to-code comparison for verification. The fuel assemblies cover the burnup range 14.3 - 47.25 GWd/tU, initial enrichment of 2.1 - 4.11 235U w/o and cooling time of 3.96 to 20.01 years. The comparison to STREAM shows the accuracy of the RAST-K SNF and prediction of the decay heat is within 4%. Overall, this paper demonstrates that RAST-K SNF calculation can be applied to the back-end cycle source term analysis.
Key words: SNF / Radiation source terms / RAST-K / back-end cycle / isotope inventory
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.