Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 11001 | |
Number of page(s) | 8 | |
Section | Reactor Operations | |
DOI | https://doi.org/10.1051/epjconf/202124711001 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124711001
OPTIMIZATION OF LOAD-FOLLOW OPERATIONS OF A 1300MW PRESSURIZED WATER REACTOR USING EVOLUTIONNARY ALGORITHMS
1 DEN - Service d’études des réacteurs et de mathématiques appliquées (SERMA) CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
2 Université du Littoral Côte d’Opale (ULCO), France
valentin.drouet@cea.fr
jean-michel.do@cea.fr
verel@univ-littoral.fr
Published online: 22 February 2021
Because of the increase of intermittent renewable energies, load follow operations for French PWR will be crucial in the years to come. The goal of this study is to make realistic changes to the plant operations in order to optimize load-following without disrupting the plant. 6 discrete parameters were considered among the overlaps, speeds and maneuvering bands of the control rods. A simulator oriented model of the pressurized reactor based on APOLLO3® is used. It includes 3D neutronics calculations with point kinetics and a 0D model of the secondary system. The operating mode (G mode) was modeled, to account for the human operator of the power plant. Two objectives were considered so as to both minimize the volume of effluents generated during the transient, and maximize the core axial stability. The reaction of the power plant to a load follow transient varies greatly during the operating cycle, because of fuel depletion effects. Therefore, 4 burnup points are considered and the objectives are computed for each point and then reduced to two “whole cycle” objectives. A biobjective massively parallel asynchronous master worker evolutionary algorithm based on AMS-MOEA/D was implemented. It is a highly exploratory algorithm, suitable for black-box problems with an important computing time. The analysis of the performances of this algorithm shows that it is able to find a diversified Pareto front, with solutions that greatly improve the load follow operations for all burnup points compared to the standard control rod parameters.
Key words: Pressurized Water Reactors / Load-Following / Optimization / Evolutionnary Algorithms
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.