Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 12007 | |
Number of page(s) | 8 | |
Section | Fuel Performance and Management | |
DOI | https://doi.org/10.1051/epjconf/202124712007 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124712007
ENRICHMENT ZONING STUDY FOR THE VERSATILE TEST REACTOR
Argonne National Laboratory 9700 S Cass Avenue, Lemont, IL 60439
mjarrett@anl.gov
fheidet@anl.gov
Published online: 22 February 2021
The primary mission of the Versatile Test Reactor (VTR) is to provide peak fast flux in excess of 4.0 x 1015 n/cm2-s to support fuel and material testing. To achieve a high fast flux, it is beneficial to maximize the flux peaking in the center of the core. With a single enrichment zone, a highly peaked flux distribution produces a highly peaked power distribution. Coolant inlet orifices can be designed to handle the peaked power distribution but orifice design can be simplified if a more even radial power distribution can be achieved. An approach to reduce the power peaking factor is to use enrichment zoning, which would improve coolant flow homogeneity. Several alternative VTR core configurations are considered with two enrichment zones (15 wt% Pu and 20 wt% Pu). These alternative configurations require more assemblies to maintain reactivity than the reference VTR core, which leads to failure to achieve the design criterion for experimental fast flux with the target core power. Configurations using 20 wt% Pu with different fuel assembly designs having smaller and larger fuel volume fractions are also analyzed. The case having a larger fuel volume fraction reduces the number of fuel assemblies required for criticality, which keeps the experimental flux higher. Configurations with volume fraction zoning can slightly decrease the peaking factor while maintaining the desired fast flux, although some thermal hydraulic limits may not be satisfied. Volume fraction zoning configurations may offer benefits, but determining the feasibility of these configurations requires further thermal hydraulic design and analysis work beyond the scope of the present work.
Key words: sodium fast reactor / test reactor / enrichment zoning
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.