Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 15001 | |
Number of page(s) | 8 | |
Section | Sensitivity & Uncertainty Methods | |
DOI | https://doi.org/10.1051/epjconf/202124715001 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124715001
APPLICATION OF RECENT DEVELOPMENTS IN INTEGRAL DATA ASSIMILATION TO IN-DEPTH ANALYSIS OF UH1.2 EXPERIMENT AND TRANSPOSITION TO WHOLE PWR CORE
CEA/DEN Building 230 CEA Cadarache 13108 Saint-Paul les Durance FRANCE
jean-marc.palau@cea.fr
axel.rizzo@cea.fr
pierre.tamagno@cea.fr
cyrille.desaintjean@cea.fr
Published online: 22 February 2021
Recent developments in the Integral Data Assimilation (IDA) methods within Bayesian framework have been achieved at CEA to tackle the problem of correlated experiments (through technological uncertainties) and neutron transport model numerical effects. Hence, reference Monte-Carlo and deterministic calculations (TRIPOLI4® and APOLLO3®) are used together to solve neutron transport equations and get the sensitivity profiles. Furthermore, the analysis of the mock-up experiments technological parameters is performed to get accurate uncertainties and correlations between the experiments (finally the covariance experimental matrix required for IDA). We apply here the IDA approach with a new, extend set of statistical indicators (Cook’s distance, Bayesian and Aikike Information criteria (BIC, AIC)) implemented in the nuclear physics CEA CONRAD code, to the integral experiments UH1.2 in reference and voided configurations (standard PWR fuel assembly in the EOLE mock-up reactor). The adjusted multigroup cross-sections and posterior covariances are compared by choosing different ingredients in the assimilation process. Finally, the investigated key neutron parameters; reactivity, reactivity worth (void effects) and fissions rates are transposed (with the same CONRAD code) to a standard PWR core. This in-depth analysis enables us to predict the residual uncertainties and biases due to the multigroup cross-section adjustments assessing at the same time the similarity of these integral experiments for the main PWR neutronic safety parameters. In addition, technological parameters uncertainties and their impact on Bayesian adjustment process are taken into account through a global experimental covariance matrix. We point out that the UH1.2 experiments bring relevant additional information to PWR keff calculations reducing significantly the posterior results but are less relevant for fission rate distribution in reference and voided configurations.
Key words: Integral Data Assimilation / TRIPOLI4® / APOLLO3® / Bayesian inference / Diagnostics / UH1.2 experiments
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.