Issue |
EPJ Web Conf.
Volume 249, 2021
Powders & Grains 2021 – 9th International Conference on Micromechanics on Granular Media
|
|
---|---|---|
Article Number | 10002 | |
Number of page(s) | 4 | |
Section | Material Instability | |
DOI | https://doi.org/10.1051/epjconf/202124910002 | |
Published online | 07 June 2021 |
https://doi.org/10.1051/epjconf/202124910002
Dynamics of undeforming regions in the lead up to failure: jumping scales from lab to field
1
School of Mathematics and Statistics, University of Melbourne, Australia
2
GroundProbe, Orica Monitor, Australia
* Corresponding author: atordesi@unimelb.edu.au
Published online: 7 June 2021
Knowledge transfer from micromechanics of granular media failure to geohazard forecasting and mitigation has been slow. But in the face of a rapidly expanding data infrastructure on the motion of individual grains for laboratory samples – and ground motion data at the field scale – opportunities to accelerate this knowledge transfer are emerging. In particular, such data assets coupled with data-driven approaches enable ‘new eyes’ to re-examine granular failure. To this end, effective strategies that can jump scales from bench to field are urgently needed. Here we demonstrate one strategy that focusses on the study of deformation patterns in the precursory failure regime using kinematic data. Unlike previous studies which focus on regions of high strains, here we probe the development and evolution of near-undeforming regions through the lens of explosive percolation. We find a common dynamical signature in which undeforming regions, which are initially transient in the precursory failure regime, become persistent from the time of imminent failure. We demonstrate the robustness of these findings for data on individual grain motions in a classical laboratory test and ground motion in two real landslides at vastly different scales.
A video is available at https://doi.org/10.48448/sgfr-dm36
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.