Issue |
EPJ Web Conf.
Volume 249, 2021
Powders & Grains 2021 – 9th International Conference on Micromechanics on Granular Media
|
|
---|---|---|
Article Number | 14002 | |
Number of page(s) | 4 | |
Section | Particle Simulations and Particle-Based Methods | |
DOI | https://doi.org/10.1051/epjconf/202124914002 | |
Published online | 07 June 2021 |
https://doi.org/10.1051/epjconf/202124914002
A procedure to join the force and volume ensemble statistical descriptions of granular media
Simulation of Physical Systems Group, Department of Physics Universidad Nacional de Colombia - Carrera 30 No. 45-03, Ed. 404, Of. 348, Bogota D.C., Colombia
* e-mail: jsreyl@unal.edu.co
** e-mail: jdmunozc@unal.edu.co
*** e-mail: woquendop@unal.edu.co
Published online: 7 June 2021
Granular media consist of a large number of discrete particles interacting mostly through contact forces that, being dissipative, jeopardizes a classical statistical equilibrium approach based on energy. Instead, two independent equilibrium statistical descriptions have been proposed: the Volume Ensemble and the Force Network Ensemble. Hereby, we propose a procedure to join them into a single description, using Discrete Element simulations of a granular medium of monodisperse spheres in the limit state of isotropic compression as testing ground. By classifying grains according to the number of faces of the Voronoï cells around them, our analysis establishes an empirical relationship between that number of faces and the number of contacts on the grain. In addition, a linear relationship between the number of faces of each Voronoï cell and the number of elementary cells proposed by T. Aste and T. Di Matteo in 2007 is found. From those two relations, an expression for the total entropy (volumes plus forces) is written in terms of the contact number, an entropy that, when maximized, gives an equation of state connecting angoricity (the temperature-like variable for the force network ensemble) and compactivity (the temperature-like variable for the volume ensemble). So, the procedure establishes a microscopic connection between geometry and mechanics and, constitutes a further step towards building a complete statistical theory for granular media in equilibrium.
A video is available at https://doi.org/10.48448/0m24-tj43
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.