Issue |
EPJ Web Conf.
Volume 250, 2021
DYMAT 2021 - 13th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 02021 | |
Number of page(s) | 6 | |
Section | Modelling & Numerical Simulation | |
DOI | https://doi.org/10.1051/epjconf/202125002021 | |
Published online | 09 September 2021 |
https://doi.org/10.1051/epjconf/202125002021
Crack arrest and propagation in impact loaded shock resistant PMMA: mesh-free numerical simulation
1
Faculty of Engineering, National Defence University of Malaysia, 57000 Kuala Lumpur, Malaysia
2
Institut Clément Ader, Université de Toulouse, ISAE-SUPAERO, MINES ALBI, UPS, INSA, CNRS, 31400 Toulouse, France
* Corresponding author: patrice.longere@isae.fr
Published online: 9 September 2021
The use of shock resistant RT-PMMA in engineering structures potentially subject to accidental overloading requires an evaluation of its crack arrest capability under impact loading. Based on experimental results obtained from a series of Kalthoff and Winkler (KW)-type impact tests, the present study aims at numerically reproducing the conditions for brittle-like crack initiation and propagation in impact-loaded RT-PMMA. For that purpose, three-dimensional SPH numerical simulations were conducted and the performance of various failure criteria was evaluated. The numerical model together with a combination of stress- and strain- dependent failure criteria were shown to fairly reproduce the experimental results in terms of finite crack advance and orientation.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.