Issue |
EPJ Web Conf.
Volume 253, 2021
ANIMMA 2021 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
|
|
---|---|---|
Article Number | 07002 | |
Number of page(s) | 5 | |
Section | Nuclear Fuel Cycle, Safeguards and Homeland Security | |
DOI | https://doi.org/10.1051/epjconf/202125307002 | |
Published online | 19 November 2021 |
https://doi.org/10.1051/epjconf/202125307002
Peak Area Consistency Evaluation in Gamma Spectrometry
Mirion Technologies (Canberra) Inc., USA
Published online: 19 November 2021
Quantification of radionuclide activities in gamma spectrometry can be a challenging task. It depends on efficiency calibration, peak area calculation, nuclide decay data and correction factors, such as attenuation correction or true coincidence summing corrections. These quantities can present significant challenges to an accurate analysis. It is therefore desirable to have a way of assessing the quality of the radionuclide quantification that can be applied to samples with unknown activities and radionuclide compositions. A verification of the self-consistency of the analysis is one possible way of accomplishing this. In gamma spectrometry it is possible to calculate radionuclide activities using information from multiple gamma emission energies. This leads to an overdetermined system for which the solution can be used to look for inconsistencies. By calculating the recovered peak areas from the radionuclide activities and comparing these to the measured peak areas, outliers can be identified and by resolving these inconsistencies the analysis of the spectrum can be improved. This peak area consistency evaluation can be used to find incorrect shape of the efficiency calibration, missing interferences in the nuclide decay data, and point to peaks where the peak area calculation needs to be optimized. The performance of the method has been shown on a simple spectrum consisting of three radionuclides that are interfering with each other as well as a complex spectrum with unknown radionuclide composition and activities. The method will be integrated into a future version the Genie 2000 Gamma Spectroscopy Software.
Key words: Gamma Spectrometry / Self-consistency check / Genie 2000
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.