Issue |
EPJ Web Conf.
Volume 274, 2022
XVth Quark Confinement and the Hadron Spectrum Conference (ConfXV)
|
|
---|---|---|
Article Number | 07002 | |
Number of page(s) | 6 | |
Section | 7 - Parallel Track F | |
DOI | https://doi.org/10.1051/epjconf/202227407002 | |
Published online | 22 December 2022 |
https://doi.org/10.1051/epjconf/202227407002
Gravitational wave signatures of phase transition from hadronic to quark matter in isolated neutron stars and binaries
Department of Physics, Indian Institute of Science Education and Research Bhopal, India
* e-mail: mallick@iiserb.ac.in
Published online: 22 December 2022
The fundamental constituent of matter at high temperature and density has intrigued physicists for quite some time. Recent results from heavy-ion colliders have enriched the Quantum Chromodynamics phase diagram at high temperatures and low baryon density. However, the phase at low temperatures and finite (mostly intermediate) baryon density remain unexplored. Theoretical Quantum Chromodynamics calculation predicts phase transition from hadronic matter to quark matter at such densities. Presently, the best laboratories available to probe such densities lie at the core of neutron stars. Recent results of how such phase transition signatures can be probed using gravitational waves both in isolated neutron stars and neutron star in binaries. The isolated neutron star would probe the very low-temperature regime, whereas neutron stars in binaries would probe finite baryon density in the intermediate temperature regime. We would also discuss whether the gravitational wave signature of such phase transition is unique and the detector specification needed to detect such signals.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.